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Abstract— In this paper, we implement the GPU-accelerated
subsystem-based Alternating Direction Method of Multipliers
(SubADMM) for interactive simulation. The challenging ob-
jective for interactive simulations is to deliver realistic results
under tight performance, even for large-scale scenarios. We
aim to achieve this by exploiting the parallelizable nature of
SubADMM to the fullest extent. We introduce a new subsystem
division strategy to make SubADMM ‘GPU friendly’ along
with custom kernel designs and optimization regarding efficient
memory access patterns. We successfully implement the GPU-
accelerated SubADMM and show the accuracy and speed of
the framework for large-scale scenarios, highlighted with an
interactive ‘Hand demo’ scenario. We also show improved
robustness and accuracy compared to other state-of-the-art
interactive simulators with several challenging scenarios that
introduce large-scale ill-conditioned dynamics problems.

I. INTRODUCTION

Interactive physics simulation has been essential for the
fields of haptics [33] and virtual reality (VR) [26], with its
importance also recognized in diverse fields such as inter-
active computer animation [11], digital twins, and mechan-
ical components design [1]. More recently, this interactive
physics simulation is considered the key enabler for the
framework of Learning from Demonstration (LfD) since it
can drastically improve sample efficiency, particularly for
contact-involving and long-horizon tasks [32], for which it
is difficult even to finish the task autonomously.

Arguably, the three most essential requirements for this
interactive physical simulation would be speed, accuracy,
and scalability. First, the simulation should deliver at least
60 frames per second (fps) speed [3] with the ratio of
simulation time step size to computation time near or larger
than one. Second, its accuracy to the ground truth (or real
physical experiment results [34]) should be small enough for
believable realism or good sim-to-real performance. Third,
it should allow for implementing a large-scale environment
with not much compromise of speed and accuracy. All
these become particularly challenging when contacts and
constraints are involved among the objects.

For this, various off-the-shelf simulators have been pro-
posed over the past decades. PhysX [10] is a state-of-the-art
simulator which is widely used as an interactive simulator in
both robotics [25] and haptics & VR [39], [15], [22], [27],
[31]. MuJoCo physics engine [38] shows the ability to be
used as an interactive simulator with a reasonable level of
accuracy for successful manipulation with a simulated human
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Fig. 1: Overview of the ‘Hand demo’ scenario. The scenario
contains a 281 number of rigid bodies dynamically coupled with
an average number of 1773 contacts and 33 joint constraints.

hand model from a simulation platform, HAPTIX [18].
This platform is also utilized to collect human manipulation
policies for imitation learning [32]. CHAI3D [17] is designed
for interactive simulation with diverse algorithms for haptic
feedback. This platform is widely used in medical simulation
research [14], [13], [7].

However, there are limitations to these simulators. These
simulators relax the actual dynamics problems to avoid tack-
ling the non-linear complementarity problem (NCP) originat-
ing from constrained dynamics problems with contact con-
ditions. PhysX relies on a position-based dynamics (XPBD
[24] ) approach, which often results in incorrect simulation
even under extensive iterations [23]. Mujoco approximates
the NCP to a relaxed cone complementarity problem (CCP),
which introduces sudden bounces and contact softening [34].
Many works using CHAI3D adopt quasi-static dynamics [6],
[40], which can handle only minimal scenarios [12]. These
simulators also have limited scalability since the underlying
solvers for these simulators are not directly parallelizable.
While XPBD can utilize parallelizable constraint projection,
Jacobi solve, this introduces a slow convergence.

In this context, we present a novel framework that tackles
the exact NCP while still being interactive and scalable for
large-scale scenarios. This framework is based on a GPU im-
plementation of the recently proposed subsystem-based Al-
ternating Direction Method of Multipliers (SubADMM [20])
algorithm. Since SubADMM can solve the exact dynamics
problem and naturally handles operations for each subsystem
and constraint in parallel, we exploit this parallelizable
nature to the fullest extent by accelerating the SubADMM
with GPU. We explain how parallelized computation can
be equally distributed among threads with technical details
to achieve accurate and interactive behavior, including the
exact handling of the non-linear complementarity-based con-
tact model, diverse joint constraints, and a tailored penalty
parameter tuning strategy. We demonstrate the ‘Hand demo’



scenario, shown in Fig. 1, and other challenging scenarios,
showing that our framework can manage diverse large-
scale scenarios accurately at interactive rates that are not
achievable with current simulators.

This work shares similarities with [37] in the context of
GPU acceleration and with [5] in the context of tackling the
exact NCP using ADMM. However, [37] tackles the CCP
and thus shares the same limitations with Mujoco, and [5]
tackles the dual formulation of the NCP, which introduces
a dense Delassus matrix into the process, making it hard to
parallelize the algorithm.

The rest of the paper is organized as follows. Some
preliminaries for constrained rigid body dynamics and the
SubADMM framework are introduced in Sec. II. Then,
implementation details for GPU-accelerated SubADMM are
described in Sec. III, followed by experiments for interactive
scenarios and challenging scenarios in Sec. IV. Finally,
conclusions are made in Sec. V.

II. PRELIMINARY

A. Constrained Dynamics

Consider the discretized dynamics with constraints of a
system, which can be divided into N number of subsystems
(e.g., rigid body, articulated rigid body, deformable body,
etc.). The dynamics can be written as follows:

Aiv̂i = bi +
∑
k∈Ii

JT
i,kλk i = 1, . . . , N (1)

where i denotes the subsystem index, v̂i denotes the rep-
resentative velocity, Ai ∈ Rni×ni , bi ∈ Rni are the mass
matrix and the dynamics vector including the momentum,
Coriolis force and external forces where ni is the degrees
of freedom of the ith subsystem, k denotes the constraint
index, Ii denotes the set of constraint indices the subsystem
is under, Ji,k ∈ Rnc,k×ni , λk ∈ Rnc,k are the time-scaled
constraint Jacobian and the constraint impulse where nc,k

denotes the constraint dimension. In this paper, we consider
three classes of constraints: soft, hard, and contact con-
straints. By dealing with the constraints at the velocity level,
we can express Nc number of these classes of constraints
with a unified expression:

(Jfk,kv̂fk + Jsk,kv̂sk , λk) ∈ C(ek) k = 1 . . . Nc (2)

where fk, sk are the indices of each first and second
subsystems which are involved in the kth constraint, and
C(ek) ∈ R2nk is the set defined by the constraint error
ek ∈ R and the constraint type. The set C(e) for each
constraint is defined below.

1) Soft constraint: Soft constraints connect two subsys-
tems with compliance via a spring and a damper.

C(e) = {(x, λ) | λ+ ke+ cx = 0} (3)

where k and c are the gain and the damping parameters.
2) Hard constraint: Hard constraints can introduce both

holonomic and non-holonomic constraints.

C(e) = {(x, λ) | x+Φ(e) = 0} (4)

where Φ(e) is the error fixed by Baumgarte stabilization [2].

3) Contact constraint: In this paper, we treat contact
constraints using the Signorini-Coulomb condition (SCC) by
expressing the set C(e) as follows:

C(e) =

(x, λ)

∣∣∣∣∣∣∣
0 ≤ λn ⊥ xn +Φ(e) ≥ 0,
0 ≤ δ ⊥ µλn − ∥λt∥2 ≥ 0,
δλt + µλnxt = 0,
δ ∈ R

 (5)

where the subscripts n and t denote the row corresponding
to each contact normal and contact tangents, and µ ∈ R
denotes the friction coefficient.

Solving the constrained dynamics becomes solving (1)
while satisfying (2). From the SCC in (5), this problem
becomes a non-linear complementarity problem (NCP).

B. Subsystem-Based ADMM
In this paper, we utilize the SubADMM framework for

its ability to tackle the NCP from Sec. II-A while handling
operations for each subsystem and constraint in parallel.
Here, we explain the details of the SubADMM framework.

SubADMM formulates the discrete constrained dynamics
problem as an optimization problem based on augmented
Lagrangian by introducing slack variables xk ∈ Rnc,k ,
zk ∈ Rnc,k and Lagrange multiplier uk ∈ Rnc,k for each
kth constraint. This optimization problem is solved using
the ADMM [4] by executing the following iterative steps:

Step 1 Velocity update:
The representative velocity of the ith subsystem is
updated as follows:

∀i,

(
Ai + βi

∑
k∈Ii

JT
i,kJi,k

)
v̂l+1
i =

bi +
∑
k∈Ii

JT
i,k

(
βiz

l
i,k − ul

i,k

) (6)

where the superscript l denotes the iteration step and
βi ∈ R is the penalty weight of the ith subsystem.
Step 2 x-update:
For ith subsystem with kth constraint, xi,k represents
the constraint space velocity, which is updated as below:

∀k, xl+1
i,k = Ji,kv̂

l+1
i (7)

Step 3 z-update:
Suppose the kth constraint involves subsystem i and j,
that is, fk = i, sk = j. This step updates zl+1

i,k and zl+1
j,k

to satisfy the constraint condition described in (2):

∀k, (zl+1
i,k + zl+1

j,k , λl+1
k ) ∈ C(ek) (8)

This can be done with the following update rules:

βiz
l+1
i,k = βix

l+1
i,k + ul

i,k︸ ︷︷ ︸
yl+1
i,k

+λl+1
k

βjz
l+1
j,k = βjx

l+1
j,k + ul

j,k︸ ︷︷ ︸
yl+1
j,k

+λl+1
k

(9)

where λl+1
k ∈ Rnc,k can be obtained by simple scalar

operations for each of three types of constraints :
– Soft constraint :

λl+1
k = −

kek + c
(
β−1
i yl+1

i + β−1
j yl+1

j

)
1 + c

(
β−1
i + β−1

j

)



– Hard constraint :

λl+1
k = −

ek + β−1
i yl+1

i + β−1
j yl+1

j

β−1
i + β−1

j

– Contact constraint :

λl+1
k = ΠC

(
−
ek + β−1

i yl+1
i + β−1

j yl+1
j

β−1
i + β−1

j

)
where ΠC denotes a strict projection on the friction
cone [19].

Step 4 u-update:
The Lagrangian multiplier for the ith subsystem with
the kth constraint, ui,k, is updated with a simple com-
putation:

∀k, ul+1
i,k = ul

i,k + βi

(
xl+1
i,k − zl+1

i,k

)
(10)

Notice that Step 1 can be done subsystem-wise parallel
while Step2~Step4 can be done constraint-wise parallel. The
work in [20] exploits these advantages by implementing the
framework using a parallelization library, C++ OpenMP, and
achieves linear scalability, showing significant improvements
in both speed and accuracy compared to existing solvers
in large-scale scenarios. However, the subsystem division in
[20] is based on system classes (rigid body, articulated rigid
body, and deformable body). This introduces a varying size
of matrices (e.g., mass matrix, constraint Jacobian, etc.) and
vectors (e.g., dynamics vector, Lagrangian multiplier, etc.)
between subsystems and constraints, making it challenging
to distribute equal computation between threads. Due to
these limitations, the original SubADMM framework cannot
directly use GPUs. In this paper, we adopt a new subsystem
division strategy to resolve these limitations and implement
GPU-accelerated SubADMM using the CUDA Toolkit [9].
By utilizing the massive computation power of modern
GPUs, we achieve sub-linear scalability and handle large
scenarios (a few thousand bodies) at an interactive rate. In
Sec. III, we explain details of subsystem division strategy
and details on the implementation.

III. GPU-ACCELERATED SUBADMM
A. Subsystem Division

The overall parallelization scheme of GPU-accelerated
SubADMM is shown in Fig. 2. We set every subsystem
as an individual rigid body with its origin in the center of
mass. This lets every subsystem have an equal 6 degrees of
freedom (DoF) and makes all matrices and vectors within the
same category (e.g., contact Jacobian, slack variables, etc.)
equally sized and computed with a unified rule. Thus, we
can distribute every parallelizable computation, explained in
Sec. II-B, equally along the threads with minimized diver-
gence (each thread doing the same computations) between
threads and straightforwardly design a global memory layout
for coalesced memory access patterns (consecutive threads
access consecutive memories). This enables SubADMM to
handle large-scale scenarios with sub-linear scalability with
modern GPUs. From the N number of subsystems, we
introduce a mass matrix Ai ∈ R6×6 and a dynamics vector
bi ∈ R6 for i = 1 . . . N . Notice that the mass matrix, Ai, is
constant, diagonal, and only 4 values can be stored: m, Ixx,
Iyy , and Izz . The dynamics vector bi includes the effect of
momentum, Coriolis force, and external wrench from user
input such as virtual coupling [8].

Fig. 2: GPU-accelerated SubADMM overview under a scenario
with N number of subsystems, NC number of contact constraints,
and NJ number of joint constraints. Each subsystem and contact
constraint is designated a memory region with the same layout
pattern. GPU threads are assigned to each memory region for paral-
lelized computation. This structure is the same for joint constraints,
which is not shown in the figure. Notice that the contact-wise
computation kernel is generally assigned more threads than the
subsystem-wise computation kernel in large-scale scenarios.

B. Contact Constraint
From NC number of contact features (contact points

and contact normals), we can construct contact Jacobians
JC
fk,k

, JC
sk,k
∈ R3×6 for k = 1 . . . NC . Here, the superscript

C stands for ‘Contact.’ Each contact constraint introduces
fixed size slack variables xC

fk,k
, xC

sk,k
, zCfk,k, zCsk,k ∈ R3

and fixed size Lagrange multipliers uC
fk,k

, uC
sk,k

∈ R3 as
shown in Fig. 2. Contact Jacobians can be constructed in
parallel before the ADMM iteration phase.

Notice that contact wrenches generated on ith body by kth
contact, FC

i,k ∈ R6, can be easily obtained from the relation
derived from SubADMM iteration steps:

λl
i,k = −ul

i,k (11)

Thus, we only perform the following calculation after the
iteration phase, which can be done in parallel for each
contact:

FC
i,k = −

JC
i,k

T
uC
i,k

δt
(12)

where δt is the size of the time step.

C. Joint Constraint
The original SubADMM [20] uses generalized coordinates

to simulate articulated rigid bodies as single subsystems.
However, in order to divide each rigid body into subsystems
while still handling articulated rigid bodies, we use joint con-
straints. Every type of joint in our framework is configured
using the local joint frame transformation matrices relative
to the body frame. This kind of method for configuring the
joints is also used in PhysX [30]. Although each type of
joint involves a different number of constraints, we always
introduce fixed-size joint Jacobians, JJ

fk,k
, JJ

sk,k
∈ R6×6,

slack variables, xJ
fk,k

, xJ
sk,k

, zJfk,k, zJsk,k ∈ R6, Lagrangian



Fig. 3: Computation distribution for fixed-sized (left) and varying-
sized (right) joint constraint data. Notice that each row of J is laid
vertically in the memory region. The grayed-out memory region is
always zero.

multipliers, uJ
fk,k

, uJ
sk,k
∈ R6, and joint errors, eJk ∈ R6.

This introduces six constraints that rigidly fix the two bodies
to each other. By setting the rows of the joint Jacobians and
joint errors corresponding to the free constraints among those
six constraints to zero, we can implement various types of
joints, such as fixed, linear, planar, Cartesian, spherical, and
cylindrical. At first glance, this may seem inefficient since
redundant calculations such as multiplying and adding zero
vectors occur. However, this approach enables each GPU
thread to handle equally sized data, as shown in Fig 3,
leading to minimized thread divergence, which is crucial
for performance in GPU computing. If we instead introduce
varying-sized Jacobains and variables, each thread should
compute those with different rules, which causes divergences
between threads as shown in Fig 3.

D. Penalty Weight Selection and Update

Each penalty weight parameter for the ith subsystem, βi,
is selected similarly as in the original SubADMM:

βi =
MTr(Ai)

Tr(Ci)
+ c (13)

where M, c ∈ R are the hyperparamters and Ci ∈ R6×6 are
defined for the ith subsystem as follows:

Ci =
∑
k∈IC

i

JC
i,k

T
JC
i,k +

∑
k∈IJ

i

JJ
i,k

T
JJ
i,k (14)

The original SubADMM framework uses the pre-computed
penalty weights throughout the entire iterations. However,
this can cause imbalanced convergence between primal and
dual residuals [35]. This imbalance can be handled by
updating the penalty weights for every m iteration step. We
choose the penalty weights update scheme similar to that
used in [36]:

βi ← Π[ 1
α , α]

(
∥rprimal∥∞
∥rdual∥∞

)
βi (15)

where α ∈ R is the hyperparameter, rprimal ∈ R6NC+12NJ

and rdual ∈ R6N , are the primal and the dual residuals defined
as follows:

rprimal =

[
xC,l+1 − zC,l+1

xJ,l+1 − zJ,l+1

]
(16)

Fig. 4: Kernels and kernel scheduling for complete simulation loop
including collision detection and GPU-accelerated SubADMM.
Each block labeled with a bold alphabet letter represents a custom-
built kernel.

(rdual)6i−5:6i =βi

∑
k∈IC

i

JC
i,k

T
(zC,l

i,k − zC,l+1
i,k )

+
∑
k∈IJ

i

JJ
i,k

T
(zJ,li,k − zJ,l+1

i,k )

 (17)

Notice that we clamp the update ratio in the [ 1α , α]
interval to avoid excessive updates. This penalty weight
update scheme balances the convergence of primal and dual
residuals and suppresses a periodic surge of either residual.
This can prevent stopping the iteration during these surges
when applying a fixed number of iterations.

The hyper-parameters M , c, and α can be tuned, but we
found that setting M = 16, c = 105, α = 4 shows good
performance, which is set as default.

E. GPU Kernel

The detailed algorithm is shown in Fig. 4. We design
custom GPU kernels for every block labeled with a bold



(a) Uncoalesced global memory access

(b) Coalesced global memory access

Fig. 5: Global Memory access pattern for two kinds of memory
layout.

alphabet appearing in Fig. 4, where the number in the
parenthesis is the number of GPU threads assigned for the
kernel call. When assembling the Ci matrices for each body,
as shown in the kernels labeled as E and F in Fig. 4, we
parallelize the execution at the constraint level rather than the
body level. This can further exploit the computation power
of the GPU since the number of constraints is generally
much larger than the number of bodies, and it can also
reduce thread divergences coming from different numbers of
constraints between the bodies. However, naively using the
add operation can cause race conditions (different threads
writing on the same memory simultaneously) since different
threads for different constraints may add to the same Ci

matrix for the same body. We thus use the atomicAdd
operation provided by the CUDA Toolkit [28] to avoid this
issue. This style of kernel design is also used for assembling
Ei ∈ R6 vectors for each ith subsystem as shown in
the kernels labeled as I and J and constructing the dual
residual, defined in (III-D), shown in the kernel labeled as
O. Notice that some kernels that computes bi, JC

i,k, JJ
i,k,

and eJk , each labeled as A, B, C, and D, are decoupled
to each other. In this case, we can schedule the kernels
to be called asynchronously to keep as many threads busy
as possible. This asynchronous scheduling is also used to
schedule kernels that update the slack variables and the
Lagrangian multipliers for each contact constraint and joint
constraint, labeled as N and O, and kernels that update the
state of each body and calculate the contact forces, labeled
as Q and R.

For acquiring the contact features, we use a custom-
built collision detector implemented with the CUDA toolkit,
appearing as a gray block in Fig. 4. Details for these are out
of the scope of this paper.

F. Memory Layout

When performing computation with GPUs, coalesced
global memory access is crucial for performance [29]. In
this section, we explain how we design memory layout pat-
terns and achieve coalesced global memory access. Consider
storing the matrix Ci for each ith subsystem defined in (14)
for all subsystems. Since each Ci is a 6×6 symmetric matrix,
we only need to store 21 elements. A naive approach to store
every matrix Ci is to assign a consecutive memory region
of size 21N and store each matrix Ci serially as shown
in Fig. 5a. This leads to uncoalesced memory access when
performing body-wise parallel computation. For example,
when computing β in (13), each ith thread computes Tr(Ci).
Thus, each ith thread should fetch (Ci)11 from memory,
which causes an uncoalesced memory access pattern as

Fig. 6: Experiment setup and scene captures for ‘Hand demo’
scenario.

Fig. 7: Scene capture for stress test scenarios. From left to right, top
to bottom: ‘Sliding cubes,’ ‘Vertical stacks,’ ‘Oblique stacks,’ and
‘Card houses’ after 912 seconds of simulation time. For ‘Vertical
stacks,’ contact forces for the front boxes are rendered as red arrows.

shown in Fig. 5a. We instead store each Ci with a stride
of N as shown in Fig. 5b, which leads to coalesced memory
access. This also leads to coalesced memory access for other
operations with the matrix Ci, such as kernel labeled as H
in Fig. 4. This kind of optimization is possible since we
divide the whole system into subsystems to have the same
DoF as explained in Sec. II-A, enabling each thread to fetch
the same amount of memories and to know what memory
address to access based on its thread index and the number
of subsystems in the scene. Similar strategies are used for
storing every vector and matrix.

IV. EXPERIMENTS

In this section, we conduct several test scenarios. Every
scenario is run with an Intel Core i9-13900K CPU and an
RTX 4080 GPU. Implementation is done with a custom-built
Unreal Engine 5.3 plugin, rendering quality set to ‘High.’
The hyperparameters from Sec. III-D are set as the default
for every scenario. The input of the hand motion used in the
‘Hand demo’ scenario, which will be described in Sec. IV-
A, is obtained using Visual Inertial Skeletal Tracking (VIST)
[21]. The overall results and settings for each scenario are
shown in Table. I. We also recommend that the readers see
the supplemental video for more details.

A. Hand demo
To highlight our simulator’s ability to handle large-scale

scenarios accurately and interactively, we implement a ‘Hand



TABLE I: Settings and performance of the solver for test scenarios described in Sec. IV. Residuals and time cost (GPU-accelerated
SubADMM) are calculated as the average for the scenario’s number of frames.

Scenario DoFs Iterations δt (ms) Time Cost (ms) ∥rprimal∥∞ ∥rdual∥∞ Contact Average (Max) Joints
Hand demo (m = 20) 1686 100 4 5.00 1.48E-5 3.99E-5 1773(1901) 33

Sliding 100 cubes (m = 30) 600 120 5 3.82 2.26E-7 2.05E-7 488(456) -
Sliding 500 cubes (m = 30) 3000 120 5 4.15 3.75E-6 3.62E-6 3864(3968) -
Sliding 1000 cubes (m = 30) 6000 120 5 4.85 5.19E-6 5.10E-6 8961(9140) -
Sliding 1500 cubes (m = 30) 9000 120 5 5.26 9.37E-6 9.16E-6 14813(15972) -
Sliding 2000 cubes (m = 30) 12000 120 5 5.51 1.05E-5 1.72E-5 21156(22660) -

Vertical stacks (m = 50) 2160 200 5 5.81 1.09E-5 7.47E-05 1438(1440) -
Oblique stacks (m = 30) 840 150 5 4.52 6.97E-7 8.62E-6 1087(1088) -
Card houses (m = 100) 2376 300 1 9.12 3.06E-8 6.64E-7 2551(2680) -

Fig. 8: Time cost of GPU-accelerated SubADMM for sliding cubes
scenarios

demo’ scenario in which a user can interact with the simula-
tion in real-time using a virtual hand. This scenario includes
tasks such as dexterous manipulation with various objects
(apple, small cube, solderer, thin spoon, wooden toy car,
etc.), stacking objects (tricky cube), and grasping heavy
objects (golden cube, Stanford bunny). To deliver physically
realistic results, the simulator should solve the NCP with
hundreds of objects and thousands of constraints in real-
time. It also should be robust for ill-conditioned problems
arising from the interaction between odd mass ratios, such
as between the fingertip (10g) and the golden cube (1kg)
or the Stanford bunny (1.5kg). As shown in Table. I, our
simulator can achieve such tight requirements. We emphasize
that contact wrenches and points between the finger and
objects, explained in Sec. III-B, are available for use in other
haptics devices. Such integration with these devices is left
as a future work. We implement the same scenario using
Chaos, a physics simulator for Unreal Engine 5, with the
same time step as the ‘Hand demo’ scenario and 256 number
of position, velocity, and projection iterations. We find that
Chaos cannot deliver enough accuracy for the dexterous
manipulation tasks. The detailed results are provided in the
supplemental video.

B. Stress test

1) Scalability: We test the scalability of GPU-accelerated
ADMM with a ‘Sliding cubes’ scenario. We test the scenario
with 100, 500, 1000, 1500, and 2000 cubes. As shown
in Fig. 8, GPU-accelerated SubADMM demonstrates sub-
linear scalability regarding the number of bodies and contact
constraints.

2) Robustness under odd mass ratio: As described in
Sec. IV-A, the interaction between odd mass ratios should be
robustly handled for interactive simulations. We further test
the robustness under odd mass ratios with two scenarios:
‘Vertical stacks’ and ‘Oblique stacks.’ In ‘Vertical stacks,
’ a 100kg box, slightly perturbed with a pitch angle, is
dropped on top of a 1kg box sitting on a 10g box. The

Fig. 9: Robustness test with odd mass ratios. From left to right:
PhysX, Mujoco, and Chaos.

scenario contains 120 number of these stacks. In ‘Oblique
stacks,’ 10kg plates are stacked upon 50g cubes. The friction
coefficient of each plate and cube is set to 3, which is
enough to prevent sliding. These scenarios are simulated
successfully, showing that our framework can handle such
large-scale and ill-conditioned problems in real-time. We
test the same scenarios using Chaos and other state-of-the-
art interactive simulators, PhysX and Mujoco, explained in
Sec. I, with an extensive number of iterations. For ‘Vertical
stacks,’ every simulator fails to stack the heavy block, as
shown in Fig. 9. For ‘Oblique stacks,’ Chaos exhibits springy
motion but successfully maintains the stack, while PhysX
and Mujoco show sliding even if we increase the friction
coefficient to 10. To enable stacking, PhysX needs techniques
such as ‘sleeping’ (ignoring consecutive small velocities),
and Mujoco needs an additional ‘No slip iteration’ but with
a large trade-off (more than 10ms) in computation time. The
detailed settings and results are provided in the supplemental
video.

3) Stacking stability: We test the stacking stability of our
simulator with a ‘Card houses’ scenario. The challenging
aspects of this scenario are well explained in [16]. The six
card houses are initially shocked due to small gaps between
each card in the first frame, and quickly stabilize. We observe
stable behavior for more than 15 minutes of simulation time
even though no stabilization methods, such as sleeping, are
used.

V. CONCLUSIONS
In this paper, we implement the GPU-accelerated Sub-

ADMM, which exploits the parallelizable nature of Sub-
ADMM to the fullest extent. We introduce a new subsystem
division strategy to make SubADMM ‘GPU friendly’ and
apply optimization techniques with GPU programming. With
an interactive ‘Hand demo’ scenario, we demonstrate the
ability of this new framework to handle large-scale scenarios
accurately at an interactive rate. We also show improved
scalability compared to the original SubADMM and accu-
racy and robustness compared with several state-of-the-art
simulators with challenging scenarios.
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