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Abstract— The gradient of typical differentiable simulation
is uninformative for two reasons: 1) non-smoothness in con-
tact dynamics not considered properly, and 2) excessive local
minima generated from the smoothing procedure. To tackle
this issue, we first propose differentiable contact dynamics
with an invariant contact set and coordinate differentiation
using a signed distance function (SDF). Also, to eliminate the
undesirable jittering caused by the smoothing procedure, which
induces extra local minima, and to achieve a smooth and
informative gradient, we further endow our framework with
a novel damped contact model. Various optimization problems
are implemented to demonstrate the usefulness and efficacy of
our differentiable framework.

I. INTRODUCTION

Optimization problems about dynamic objects, such as
model predictive control [1], trajectory optimization [2], [3],
and parameter identification [4] of dynamic objects, are
required in various robotics problems. However, it is chal-
lenging since consideration of the dynamics of each object
and the interaction between other objects or environments
is required. It is promising to use the gradient of the dif-
ferentiable simulator as a way to overcome these limitations
[5]–[8]. With the gradient, the gradient-based optimization
methods such as the Newton method are achievable and can
be used to improve the efficiency of various optimization
problems.

Many techniques have been proposed to determine the
gradient of the dynamics simulations. First, in the work of
[9], a framework for achieving the gradient for free motion of
an articulated rigid body algorithm was suggested. Differen-
tiable rigid body simulations have been extended to include
constraints such as contact [4], [10], [11]. Following that,
studies to determine the gradient of soft object simulation
were conducted [8], [12], [13].

Although these various differentiable simulations have
been studied, little has been done about whether they can
provide useful gradients for solving a variety of problems
in practice. Very recently, some studies shed light on the
quality of gradient of differentiable simulators, which often
turns out to be uninformative (i.e. only useful in a small area)
[14]–[17]. Based on our study, it can be explained by two
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factors: 1) non-smoothness in contact dynamics that was not
properly addressed, and 2) the occurrence of excessive local
minima from the smoothing process.

First, the non-smoothness in contact dynamics is caused by
discrete change of contact features [12] and non-smooth tran-
sitions between contact states [11]. The contact conditions
are defined depend on the contact features (i.e. contact point,
contact normal vector, and the total number of contact). Thus,
as the contact appears and departs, the contact features vary,
whereas the contact condition changes discontinuously. If
differentiation is not performed in consideration of these
changes, the gradient will not be accurate. Also, due to
the complementarity nature of the contact model, the tran-
sitions between the contact states are non-smooth, thereby
the gradient cannot take the transitions into account. Some
methods of smoothing the contact model, such as penalty
functions [8], interior point method [11], and log-barrier
method [18] have been proposed. As demonstrated in this
paper, these methods efficiently smooth the simulation result
of a single time step; however, when applied sequentially
to the simulation with time correlation, jittering occurs in
the result of simulation, causing extra local minima and
degrading optimization problem efficiency. Therefore, these
methods cannot make the gradient to be informative.

In this paper, we suggest a differentiable simulation frame-
work that can offer a reliable and informative gradient
considering the non-smoothness in the contact dynamics. The
key ideas to tackle theses issues in our framework are as
follows. We first propose the differentiable contact condition
with two components: 1) invariant contact set and 2) contact
coordinate differentiation using a signed distance function
(SDF). These allow us to differentiate contact condition that
was previously not differentiable due to the discontinuous
changes of contact features, resulting in a more reliable
gradient. Remarkably, this process also turns out to eliminate
the need to take time of impact into account for the differenti-
ation, which has a considerable impact on the accuracy of the
gradient [7]. We then propose a novel contact model named
damped contact force to solve the short-sightedness of the
gradient. According to our analysis, the cause of the jitters is
the generation of oscillation due to the energy preservation.
The damped contact model allows for energy dissipation
during contact, resulting in smooth behavior.

The rest of the paper is organized as follows. Sec. II
introduces preliminary background about dynamics simula-
tion for this paper. Then the analysis of the non-smoothness
in the contact dynamics is presented in Sec. III, followed
by proposition of our differentiable simulation framework

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 11683

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
51

9

Authorized licensed use limited to: Seoul National University. Downloaded on October 05,2023 at 04:10:59 UTC from IEEE Xplore.  Restrictions apply. 



in Sec. IV. Sec. V presents applications of the framework
on optimization problems, followed by some concluding
remarks in Sec. VI.

II. PRELIMINARY

A. Dynamics Discretization

The dynamics of an object with contact in continuous time
are expressed as

Mq̈ = −ψ(q) + fext + JT
c λc

where M ∈ Rn×n is the mass matrix, q ∈ Rn is the state
of the object, −ψ(q) ∈ Rn is the internal force, fext ∈
Rn are the external force, and λc = [λ1; · · · ;λm] ∈ R3m,
Jc ∈ R3m×n are contact impulse/Jacobian with n,m being
the dimension of the state and the number of contact points.
Then we can discretize the dynamics as

M
vk+1 − vk

Tk
= −ψk(qk+1) + fext,k + JT

c,kλc,k

v̂k =
vk+1 + vk

2
, qk+1 = qk + v̂kTk

where v̂ ∈ Rn is the representative velocity [19], Tk is
the size of the time step with k denotes the step size. We
determine the internal force ψ implicitly (i.e., related to v̂k)
with linearized form based on the potential action model
proposed in [19], to preserve the stability and reliably. The
time index k is omitted from here for brevity, and when
representing the next time step, superscript + will be marked.

If the object is deformable, the state q will be the
stack of the positions of the nodes on the object as q =
[xT1 , · · · , xTns

]T ∈ R3ns , where ns being the number of the
nodes. On the other hand, if the object is rigid, the state can
be written with the position and the rotation of a designated
body coordinate.

B. Contact Models

The constraints that the contact force must meet can
be expressed with various models. The Signorini-Coulomb
model is widely used in physics simulation where high
physical fidelity is required [13]. It can be formulated with
equality constraints and complementarity conditions as:

0 ≤ g(x+i ) ⊥ λ
(n)
i ≥ 0 (1)

0 ≤ ϕi ⊥ µλ
(n)
i − ∥λ(t)i ∥ ≥ 0 (2)

λ
(n)
i J

(t)
c,i v̂ + ϕiλ

(t)
i = 0 (3)

where i = {1, · · · ,m} denotes the index of each contact,
g(x) is the gap function between a point x ∈ R3 and
the environment, the superscripts (n), (t) mean the normal
and tangential components respectively and ϕi ∈ R is the
auxiliary variable.

The outcomes of the Signorini-Coulomb conditions (1)-(3)
can be classified into three contact states - 1) open, 2) stick,
and 3) slip due to the complementarity, and the switching
between each state is non-smooth.

The penalty-based contact model, in contrast to the
Signorini-Coulomb condition, converts the contact con-
straints with compliance by introducing penalty force for the

constraint violation. The contact constraint for the penalty
method can be formalized as follows:

λ
(n)
i = kn max(−g(x+i ), 0)

λ
(t)
i = −min(kn∥J (t)

c,i v̂∥, µλ
(n))

J
(t)
c,i v̂

∥J (t)
c,i v̂∥

where kn is the penalty coefficient.

III. UNINFORMATIVE GRADIENT OF DIFFERENTIABLE
SIMULATION

A. Non-smoothness of the Contact Condition

The inherent non-smoothness of contact dynamics is one
of the reasons why gradients of differentiable simulations
are not useful. Due to this non-smoothness, an informative
gradient can be provided only within an area where switching
does not occur. For example, if an object in a free space (i.e.
contact is not detected), the gradient from simulation cannot
provide information that the contact may be generated when
it approaches to the ground. In other words, smooth contact
conditions without such non-smoothness is required to obtain
useful gradients. First, let us examine the two factors of non-
smoothness.

1) Discontinuous Change of Contact Feature: In
detection-based dynamic simulations, which conduct
collision detection every time step, the contact features (i.e.
contact point, normal, and the number of contact) vary
discretely over time. These changes, as also mentioned in
[12], generate discontinuities and reduce the reliability of
the gradient.

2) Non-smooth Transitions between Contact States: The
second factor of the non-smoothness is the switching be-
tween the contact states - stick, slip, and open [8]. Several
relaxation strategies have been proposed to smooth this out.
The work of [11] utilized perturbed Signorini condition
to relax complementarity by introducing the central path
parameter, and log barrier function is used for smoothing in
[18]. Also, it can be smoothed by utilizing penalty function
as in [2].

Perturbed Signorini: λ
(n)
i = σ/g

Smooth penalty: λ
(n)
i = −knsmax(−g, 0)

Log barrier: λ
(n)
i = −min(g − ĝ, 0)2 ln( gĝ )

(4)

where g(x+i ) is briefly written as g, ĝ is the target distance
[18], smax(·) is the smooth maximum function. In this paper,
we will use the smooth maximum unit [20] as one of the
smooth maximum function for the smooth penalty method.
The comparison between the contact models is presented in
Fig. 1a.

B. Jittering in the Dynamics of Smoothed Contact Models

The non-smoothness of the contact conditions can be
eliminated by solving the above two factors. However, when
the above smoothing schemes are applied to successive
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(a) Contact force (b) Potential energy

Fig. 1: Comparison of the contact models and the potential energy
(6) defined from each contact models.

(a) Final position (b) Derivative of the final position

Fig. 2: Comparison of the final position and the gradient about
initial position of a free-falling particle when apply each contact
model

time steps, jittering may occur, resulting in excessive local
minima, as shown in Fig. 2.

The reason why jittering occurs can be explained from
an energy perspective. Let us assume a frictionless object
and a flat environment. The indefinite integral of the smooth
contact force (4) can be interpreted as potential energy, since
the energy depends only on the position of the object, and
not by the path traveled in moving from one position to other
[21]. Then the total energy E of the system can be written
as:

E = q̇TMq̇ + U (5)

U :=

∫ x

x0

(−λc(g(x)) · dx−G · dq) (6)

where x0 is a datum point, U is the total potential energy
including gravitational energy, which shape is shown in Fig.
1b. Then the total energy is preserved, and an oscillation
occurs around the local minima of the potential energy [21].
Fig. 2 shows the result of the point mass simulation with
the contact models. Such jittering is even exacerbated in the
gradient (Fig. 2b), necessarily degenerate the solvability of
optimization problem when utilizing the gradient.

To alleviate this jittering, damping can be added to the
dynamics. However, a significant quantity of damping is
necessary to suppress the oscillation, and the object can not
move dynamically. To avoid this, for the penalty method,
damping can be added only when penetration happens [8].
However, there are also problems with this method: 1) the
process of detecting penetration is discontinuous, resulting

Fig. 3: Comparison between penalty method with damping on
dynamics (yellow), proposed method (blue), and position-based
Signorini condition (pink). The damping coefficient is chosen to be
critically damped with kn = 1000, and damping parameter selected
as α = 1.5 for proposed method.

in discontinuity; 2) when penetration occurs, the movement
is suppressed by strong damping and cannot move, thereby
rolling or lifting from the floor cannot be implemented well.
Fig. 3 is a snapshot of the Stanford bunny simulation with
an initial angular velocity, and it can be seen that the bunny
cannot roll.

C. Summary

The gradient offered from simulations are not typically
informative due to the non-smoothness of contact dynamics.
Some differentiable simulators have suggested different con-
tact models to solve the issue of the non-smooth transitions
between the states (Sec. III-A.2). However, the problems that
the contact features change discontinuously (Sec. III-A.1),
or jittering may exist (Sec. III-B) have not been investigated
. In this paper, we aim to obtain a smooth contact model
without such discontinuous or uneven changes by solving
the problem of discontinuous change of contact features and
jittering.

IV. PROPOSED DIFFERENTIABLE CONTACT SIMULATION

A. Differentiable Contact Feature

The contact Jacobian Jc consists of a contact point map-
ping Jp ∈ R3m×n that maps a state to contact points and
a rotation mapping Rc ∈ R3m×3m that rotates the frame to
the local coordinates as:

Jc = RcJp ∈ R3m×n

Rc =

Rc,1 · · · 0

0
. . . 0

0 · · · Rc,m

 , Jp =

Jp,1...
Jp,m


where Jp,i is the Jacobian matrix for i-th contact point, Rc,i

is SO(3) matrix that transforms coordinate to the contact
frame {ci} from global frame {g}, with m being the number
of the contact. The contact point mapping is dependent on
the contact point xi, and the rotation mapping is dependent
on the contact normal vector ni.

These contact features, however, vary discretely as the
contact occurs and vanishes discontinuously. Even the num-
ber of the contacts m, which determines the dimension of
the contact condition changes discretely. To this end, we
suggest 1) invariant contact set to make the number of contact
point constant and 2) SDF-based coordinate differentiation
to calculate the derivative the rotation mapping.
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Fig. 4: Schematic illustration of the invariant contact mapping using
the collision proxies and SDF-based coordinate differentiation.
(Purple dots : collision proxies)

1) Invariant Contact Set: The key idea is to pre-specify
collision proxies on the surface of an object as illustrated in
Fig. 4, and apply the contact condition (1)-(3) for all proxies
in the contact solving process. When using a detection-
based method, the points with penetration is selected every
time step and contact condition is enforced to the detected
points. In this selection process, a discontinuity occurs, and
the mapping matrix Jp changes discretely. Our method, on
the other hand, does not require selection because contact
conditions are enforced to all collision proxies and the
mapping matrix is constant.

For the case of soft objects, we can define the colli-
sion proxies as the mesh nodes. Then the contact mapping
becomes a selection matrix for the collision proxies, for
example:

Jp,i =
[
03×3 · · · I3×3 · · · 03×3

]
∈ R3×n

which makes the contact point mapping Jp constant.
Unlike deformable objects, rigid objects are expressed

by the position and the rotation of the origin of the body
coordinate. Therefore, the mapping to a point on the body
becomes nonlinear. However, if the rotation of the rigid
object is represented with all nine components of the rotation
matrix [22], the contact point mapping becomes constant as:

q =
[
xTr RT

x RT
y RT

z

]T ∈ R12

Jp,i =

I3×3

rTc,i 01×3 01×3

01×3 rTc,i 01×3

01×3 01×3 rTc,i

 ∈ R3×12

where xr, Rx, Ry, Rz ∈ R3 are the origin and the three basis
vectors of the body coordinate, and rc,i ∈ R3 is the position
of the i-th collision proxy represented in the body coordinate,
which is constant, as shown in Fig. 4. The contact point
mapping for a rigid object also is constant for every time
step, meaning that it is invariant, and is also exact (i.e., no
linearization error).

2) SDF-based Coordinate Differentiation: To differentiate
the local contact coordinate, we express the environment as
a SDF. Then, the basis vectors Ri can be written with the

first-order derivative of the SDF g as:

ni = ∇g(xi) ∈ R3[
t1i t2i

]
= null

(
nTi

)
∈ R3×2

Ri =
[
t1i t2i ni

]T ∈ SO(3)

where ni, t1i and t2i are the normal and two tangential basis of
the local contact coordinate each, and g is the SDF function.
Thus, the first derivative of Ri can in turn be written by
using the second derivative of SDF g.

A derivative of a rotation matrix can be written as an
multiplication of skew matrix of an screw axis. Let wξ,i be
the screw axis for the derivative of Ri about a parameter or
state ξ:

d (Ri)
T

dξ
= S(wξ,i)(Ri)

T (7)

Then, what we need to calculate is the axis wξ,i. For the
normal vector ni, the differentiation (7) can be rewritten as:

dni
dξ

= wξ,i × ni

where, ni := ∇gi,
dni

dξ
= ∇ξ∇gi

(8)

Since ni and dni

dξ can be calculated from the SDF, from (8),
wξ,i can be obtained as follows:

wξ,i = ni ×
dni

dξ
+ βni ∀β ∈ R

where β can be chosen arbitrarily, which can be proved from
the fact that JT

c λ is invariant of the tangential basis. In this
paper, β is chosen as zero. Then the derivative of Ri can be
obtained as:

dRi

dξ
=


(
wξ,i × t1i

)T(
wξ,i × t2i

)T
∇ξ∇gi(xi)


With the calculated derivative of the contact coordinate, the
more reliable gradient of the simulation can be obtained.

Therefore, the contact point mapping function can be
differentiated as 1) the contact set is invariant and 2) the
local contact coordinate Rc can be differentiated.

B. Damped Contact Force

With the invariant contact mapping and smooth contact
conditions (4), the non-smoothness of the contact dynamics
can eliminated. However, as pointed in Sec. III-B, jittering
of the contact dynamics occur when smooth contact force
is utilized in conjunction of position-based Signorini condi-
tion. Since jittering may induce excessive local minima, the
efficiency of optimization problems may be degenerated.

In real physics, the energy (5) is dissipated at the moment
of the contact, but when a smooth contact force is used,
the contact force functions as a conservative force, and the
oscillation takes place. Based on this analysis, we propose
a novel contact model named damped contact force that
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dissipates energy to achieve beneficial gradients without
jittering:

0 ≤ gn(x+i ) + αJn
c,iv̂T︸ ︷︷ ︸

=:gd(x
+
i ,v̂)

⊥ λni ≥ 0 (9)

where α ≥ 0 is a damping parameter. If α = 0, the proposed
contact model is equivalent with the original Signorini-
Coulomb condition. If α goes to infinity, then the object
will not fall down and stop in the air, as the energy is
excessively dissipated. To have an intuitive grasp of the
damped contact force, let us assume the SDF g(·) is a
linear mapping implying the environment is flat. The contact
condition can therefore be rewritten as:

(xni )
+ ≥ α

α+ 1
xni

The contact force bounds the normal directional position of
the collision proxy above αxni /(α + 1), while Signorini-
Coulomb condition bounds it above zero. If the object is
moving away from the contact point or the velocity of
approaching is not sufficient, the damping force is not gen-
erated, which makes a difference from adding the damping
explicitly in the dynamics. As mentioned above, explicit
damping causes the problem of being stuck in the floor,
whereas the proposed method solves the problem and is able
to implement rolling (Fig. 3).

In conjunction with the damped contact force and (4), we
can smooth the proposed damped contact condition as:

Perturbed Signorini: λni = σn/gd

Penalty : λni = −knsmax (−gd, 0)
(10)

where gd(x
+
i , v̂) is abbreviated as gd. With the damped

contact force, the total energy defined in (5) is dissipated
during contact. The energy change can be written as follow:

Ė = ẋT (Mẍ− Jn
c λ(g(x))−G)

= ẋT (Jn
c )

T (λ (g(x) + αJn
c ẋ)− λ (g(x)))

≈ α∥Jn
c ẋ∥2∇λ < 0

Since λ(·) is a decreasing function as shown in Fig. 1a, Ė
is negative, energy dissipation occurs, and as the value of
α increases, the amount of the dissipation increases. In the
case of the penalty function, ∇λ = −kn, therefore Ė =
−αkn∥Jn

c ẋ∥2. With the damped contact force, the energy
dissipates which suppresses the oscillation. Finally, with the
damped contact forces and smooth contact conditions (i.e.,
invariant contact set), smooth, not jittery, and informative
gradients can be obtained.

V. EVALUATIONS

A. Comparison of the Cost Landscape: Rigid Box Flipping

In order to verify that the dynamics are effectively
smoothed with our framework, an ablation study of the
landscape of the cost with a box flipping task is conducted.
Fig. 5 shows the simulation snapshots of the task. The angle
and height of lifting the floor are parameterized, and the
norm of the difference between the final pose and the initial

Fig. 5: Snapshots of the rigid box flipping simulation.

(a) Cost (b) Derivative of the cost

Fig. 6: Comparison of the cost and gradient of the cost of rigid
box flipping when applying each contact model. model 1: without
invariant contact set, model 2: without damped contact force (per-
turbed complementarity), model 3: without damped contact force
(smooth penalty).

pose is set as cost. The simulation is performed for 0.8 s, the
size of the time step is 10 ms, and the damping parameter
α is chosen to be 9.

The landscape of the cost and the derivative of the cost
about the parameter is presented in Fig. 6. As shown in
the figure, when detection is conducted, which means that
the contact set is not invariant (model 1), the cost itself is
jittery (i.e. varying contact mapping, perturbed Signorini, no
damped contact force). Also without our damped contact
force methods, the cost and the gradient of both contact
models are shown to be jittery (model 2, model 3). On the
other hand, with the proposed method, jittering is suppressed
and a smooth landscape is induced.

B. Comparison of the Reliability: Rigid Ball Rolling

For a gradient to be reliable, it must be possible to accu-
rately obtain the differentiation for an arbitrarily cost using
the gradient. To show the reliability, we compare the exact
cost and the reconstructed cost calculated by numerically
integration using the gradient. The reconstructed cost must
be equal to the exact cost.

We present a simulation of a rigid ball rolling inside a
sphere, and the cost is the distance from the final pose
to the goal pose. For intuitive comparison via 2D graph,
we parameterize initial position and velocity with one-
dimensional parameter p. The following equation shows how
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(a) Simulation setting (b) Comparison between costs

Fig. 7: Comparison of the cost and gradient of the cost of rigid
box flipping when applying each contact model. Proposed model :
α = 0.25, model 1: without SDF-based coordinate differentiation,
model 2: without invariant contact set.

Fig. 8: Result of trajectory optimization in cloth flipping scenario
with the proposed framework (α = 0.3). The goal is to place the
edges marked with the green balls at the goal positions marked with
the purple balls. Position control is conducted on the nodes with
red balls.

the reconstructed cost is calculated:

O(pk) = ∥qN − qg∥2

dO
dp

|p=pk
= 2(qN − q0)

T dqN
dp

|p=pk

Or(pk) = Or(pk−1) +
dO
dp

|p=pk
(pk − pk−1)

where q0, qN , qg ∈ R6 are a initial, final, goal pose respec-
tively, O(pk) is the exact cost with parameter pk, and Or(pk)
is the reconstructed cost using the calculated gradient dO

dp .
Compare the exact cost and the reconstructed cost obtained

from the simulator using different contact models. As shown
in Fig. 7, with our proposed contact model, the reconstructed
cost Or well match with the exact cost O. On the other hand,
as the environment is not flat, without contact coordinate
differentiation (model 1), the reconstructed cost significantly
differs from the exact cost. Additionally, without the invariant
contact point set (model 2), discontinuity due to the detection
remains, and the cost jitters significantly as shown in the
figure. In addition, the gradient achieved without the invariant
contact point mapping does not match the cost.

C. Trajectory Optimization: Cloth Manipulation

The derivative of the dynamics can be to solve trajec-
tory optimization or optimal control effectively by enabling
gradient-based optimization. Here, we consider a trajectory
optimization that optimizes control input for flipping the
cloth. We construct the optimization using the direct shooting

method as:

min
u

Ns∑
k=1

lk(xk, uk) + h(xNs , uNs)

s.t. xk+1 = f(xk, uk)

where Ns is the length of the time step, uk is the control
input, lk is the running cost function of k-th time step, h
is the terminal cost function, and f is the dynamics with
contact conditions. We adopt the quasi-newton method for
our cloth manipulation. The cloth is modeled with the finite
element method (FEM) with plane stress [23]. The flipping
simulation is conducted for 0.8 s, and the length of the time
step is 10 ms. The objective function is defined as a distance
to the goal position of two selected nodes and a roughly
tuned nominal trajectory is given.

As can be seen from Fig. 8, the cost is well reduced
during optimization and the cloth is successfully flipped.
Furthermore, we compare the optimization results when
the damped contact force/invariant contact set is not used.
We test by changing the initial trajectory/goal position and
averaging the result. The damping parameter α is chosen to
be 0.3. The mean cost after 25 iterations is in Table I, and
the result validates the efficacy of our reliable gradient on
the actual optimization problem.

Model Proposed w.o. damped w.o. invariant
contact force contact set

Cost 0.0081 0.0125 0.0311
TABLE I: Comparison between average final cost of proposed
framework and without damped contact force/invariant contact set.

VI. CONCLUSION

We present a novel differentiable simulator with invariant
contact point mapping and damped contact force. With the
proposed methods, the non-smoothness of the contact dy-
namics is smoothed, and a reliable and informative gradient
can be obtained.

Collisions in this article are restricted to collisions between
dynamics objects and static objects, and cannot handle self-
collisions or collisions between dynamics objects. However,
by representing each tetrahedral mesh as a set of SDFs, it
will be able to deal with contact in various situations with
the proposed methods. Furthermore, it increases simulation
time since all collision proxies are considered as contact
points. This can be solved by modifying the contact condition
modeling to enable contact poing culling. From this, some fu-
ture improvement directs include: 1) contact conditions that
can be applied to self-collisions, 2) fast forward / backward
simulation of the differentiable simulation. Furthermore, the
degree of smoothing is affected by the smoothing parameter
α for the damped contact force method. It would be useful
to establish a criterion for determining this parameter based
on the optimization problem and scenario of the simulation.
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