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a b s t r a c t

We propose a novel unified passivity-based adaptive backstepping control framework for ‘‘mixed’’
quadrotor-type unmanned aerial vehicles (UAVs), which consists of the translation dynamics with thrust
force input λ ∈ ℜ and the attitude kinematics with the angular velocity input w ∈ ℜ

3 evolving on
SE(3). We also show how our proposed unified framework can be used for velocity field following, timed
trajectory tracking and haptic interaction over the Internet, while also providing a complete stability
(or collision avoidance) analysis. Experiments using a real quadrotor and lossy communication (for the
teleoperation) are also performed to illustrate the theory.
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1. Introduction

Unmanned aerial vehicles (UAVs) are promising to achieve
many useful applications with the cost associated to the on-
board human pilots removed: landscape survey, entertainment
and games, surveillance/reconnaissance, remote repair, and pre-
cise unmanned attack, to name a few. In particular, quadrotor-
type UAVs have recently receivedmuch attention, due to its agility,
(relative) easiness of control, affordability and availability [1].
Teleoperation of such quadrotors would even further expand the
application horizons of this versatile flying robotic platform, par-
ticularly when it is required to perform complicated/cognitively-
loaded tasks in uncertain/unknown environments [2–4].

In this paper, we propose a novel adaptive backstepping con-
trol framework for ‘‘mixed’’ quadrotor-type UAVs [5], which can be
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modeled as a combination of the translation dynamics in E(3) and
the attitude kinematics in SO(3), with the thrust force λ ∈ ℜ and
the angular velocityw ∈ ℜ

3 as the control input. Here, we focus on
these ‘‘mixed’’ quadrotors, since: (1) many commercially available
UAVs (e.g., Asctec Hummingbird R⃝ or Pelican R⃝) often allow for di-
rect control of only its angular velocity, not the angular torque, and
(2) it is usually possible to design (low-level) angular torque input
(i.e., for attitude dynamics) to duplicate (high-level) angular veloc-
ity command for the quadrotor’s fully-actuated rotation dynamics,
thereby, can ‘‘modularize’’ rotational control implementation.

This mixed quadrotor, however, is under-actuated with only
the 1-degree-of-freedom (DOF) thrust force input λ for the 3-
dimensional Cartesian dynamics in E(3), although the rotational
dynamics in SO(3) is fully-actuated with w ∈ ℜ

3. On the other
hand, the mass parameter of the quadrotor as regards to the thrust
force λ in general suffers from some uncertainty, particularly due
to many nonlinear effects on the generation mechanisms of λ.

In this paper, we propose a novel unified passivity-based adap-
tive backstepping control framework for the mixed quadrotors,
where the backstepping technique [6] is used to overcome the
quadrotor’s under-actuation, while the parameter adaptation ap-
proach to online estimate uncertainmass parameter of the quadro-
tor [7]. For this, we particularly reveal and utilize a certain passivity
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structure inherent to this quadrotor-type UAV. Moreover, we also
characterize a class of control actions, which are designed for the
fully-actuated point-mass dynamics, yet, still transferable to the
under-actuated quadrotors with uncertain mass parameter. This
unified class of control actions in fact includes the following two
possiblymostwidely-used control objectives: velocity field follow-
ing and timed trajectory tracking. We also show how our adap-
tive backstepping trajectory tracking control can be applied to the
recently proposed semi-autonomous teleoperation control archi-
tecture in [2] and also provide a complete stability and collision
avoidance analysis of the total teleoperation-loop.

Numerous strong control techniques have been proposed for
the control of quadrotors or similar systems (e.g., [8–14]). How-
ever, they are typically developed for specific control objectives
(e.g., trajectory tracking [5,8,9,11,13,14]; path or velocity follow-
ing [10,13]) and do not aim to provide a unified control synthesis
framework or characterize the class of possible control actions as
achieved in this paper. Most of the available results for the quadro-
tor control is also for dynamic quadrotors (i.e., accept thrust force
and angular torque input) even if many commercially-available
systems are ‘‘mixed’’ quadrotors (i.e., accept thrust force and an-
gular velocity input). In contrast, our proposed adaptive backstep-
ping control framework is derived specifically for these ‘‘mixed’’
quadrotors, thus, applicable to many such commercial quadrotor
platforms and also much simpler (and easier to implement) than
those control laws developed for dynamic quadrotors (cf., [9,10,
14]). Our backstepping control also fully embraces the geometry of
SE(3), thus, free from the singularity stemming from SO(3) param-
eterization (e.g., [11,12]), and on-line adapts the mass parameter
of the quadrotors, which turn out to be crucial to maintain desired
height in real implementation (cf., [9]).

We also show how to apply our adaptive backstepping control
to the recently proposed UAV teleoperation architecture of [2]. For
this, we particularly elucidate how to utilize a dynamic-extension
like filter to circumvent the problem of using high-order deriva-
tives of the master device’s position signal received from the dis-
continuous Internet for our adaptive backstepping control; provide
a complete stability/collision-avoidance analysis including all the
control-layers in the teleoperation architecture; and also present
new Internet teleoperation experimental results with lossy-
communication, all of which were only alluded or missing in [2].

A conference version of this paper is [15]. However, in [15],
only the backstepping trajectory tracking control (i.e., result of Sec-
tion 3.2) was presented with no parameter adaptation and robust-
ness analysis. The current version generalizes the result of [15]
to the unified passivity-based adaptive backstepping control de-
sign while also characterizes a class of possible control actions,
with the trajectory tracking in [15] merely as one example of such.
The proof of stability/collision-avoidance for the teleoperation (i.e.,
Proposition 1) is also completely revised to fully incorporate all the
relevant control layers. All new experiments are also performed,
particularly those on teleoperationwith lossy-communicationpre-
sented for the first time here.

The rest of this paper is organized as follows. Section 2 presents
the modeling of the ‘‘mixed’’ quadrotors. Our unified passivity-
based adaptive backstepping control framework for quadrotors
is then presented and detailed in Section 3 along with velocity
following (Section 3.1) and trajectory tracking (Section 3.2) as
examples for that. We then apply our adaptive backstepping
tracking control for the problem of haptic teleoperation over the
Internet in Section 4. Experimental results are then presented in
Section 5. Some concluding remarks are given in Section 6.
Fig. 1. Quadrotor: {O} := {No, Eo,Do
} and {B} := {NB, EB,DB

} are the inertial and
body frames, with thrust and gravity along DB and Do .

2. Under-actuated quadrotor-type UAV

We consider the following quadrotor-type UAV, evolving on
SE(3) according to the translation dynamics and attitude kinemat-
ics [5,13]:

mẍ = −λRe3 + mge3 + δ (1)

Ṙ = RS(w) (2)

where m > 0 is the (uncertain) mass, x ∈ ℜ
3 is the Cartesian po-

sition expressed in the inertial NED (north-east-down) frame with
e3 representing its down-direction, λ ∈ ℜ is the thrust along the
body-frame down direction, δ ∈ ℜ

3 is the Cartesian disturbance,
R ∈ SO(3) is the rotational matrix describing the orientation of
the body NED frame of UAV relative to the inertial NED frame,
w := [w1, w2, w3] ∈ ℜ

3 is the angular velocity of the UAV ex-
pressed in the body NED frame, g is the gravitational constant, and
S(⋆) : ℜ

3
→ so(3) is the skew-symmetric operator defined s.t. for

a, b ∈ ℜ
3, S(a)b = a × b. See Fig. 1.

Here, we assume that the control inputs for the quadrotor
(1)–(2) are the thrust force λ ∈ ℜ and the angular velocityw ∈ ℜ

3.
This ‘‘mixed’’ quadrotor (1)–(2) can capture many commer-
cially available UAVs shipped with a manufacturer’s low-level
attitude control servo-loop already implemented (e.g. Asctec
Hummingbird R⃝). The control inputs (λ, w) obtained for these
‘‘mixed’’ quadrotors (1)–(2) can also be applied to the ‘‘dynamic’’
quadrotors (i.e., with translation and attitude dynamics). This is be-
cause it is rather straightforward to design the angular torque input
τ ∈ ℜ

3 for the dynamic quadrotors to reproduce the target angu-
lar velocity w, as its rotational dynamics on SO(3) is fully-actuated
(e.g., passivity-based control [16]).

The main difficulty of controlling the quadrotor-type UAV
(1)–(2) is that it is under-actuated, that is, although the rotation
motion can be directly driven by w ∈ ℜ

3, its Cartesian dynamics
(1) has only 1-DOF thrust inputλ, whose direction is fixed along the
down-direction of the UAV’s body and can only be controlled via its
rotational motion. In Section 3, we will show that, even with this
issue of under-actuation and also with uncertainty in the estimate
of quadrotor’s massm, a fairly large class of control actions, which
can be achieved for the simple point-mass dynamics (i.e.,mẍ = u),
can also be attained for the quadrotor’s Cartesian motion (1). For
this, we will utilize the backstepping technique [6] along with
adaptive control approach [7] to respectively address the issues
of the under-actuation and the parametric uncertainty inm, while
also exploiting a certain passivity property of the under-actuated
quadrotors (1)–(2) with some suitably defined input–output pairs.

3. Unified passivity-based adaptive backstepping control of
quadrotor UAVs

Suppose we want the quadrotor’s Cartesian position x ∈ ℜ
3 to

evolve according to a certain desired control ν ∈ ℜ
3 with the target

closed-loop dynamics of x given by

mẍ = ν(m, x, ẋ, t) (3)
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Fig. 2. Passivity of the closed-loop quadrotor Cartesian dynamics with under-
actuation and uncertain mass parameterm (see (9)).

where ν(m, x, ẋ, t) is the control designed for the point-mass
dynamics while ignoring the issue of the quadrotor’s under-
actuation. Here, we assume ν to be a function of x, ẋ and the time t ,
and also requires themassm of the quadrotor.We also assume that
the target closed-loop dynamics (3) can bewritten as the following
dynamics equation

ξ̇ = fo(ξ , t) (4)

where ξ ∈ ℜ
m constitutes the state of the closed-loopdynamics (3)

and fo : ℜ
m

× ℜ
+

→ ℜ
m has its equilibrium at ξ = 0 and defines

an asymptotically stable dynamics around this equilibrium. We
further assume that the equilibrium of the closed-loop dynamics
(3) (or (4)) defines the desired behavior for x, that is, what wewant
to achieve is

ξ → 0 (5)

(e.g., ξ = (x, ẋ) for stabilization).
Of course, due to the under-actuation of the quadrotor, it is in

general impossible to duplicate the desired control ν by the thrust-
input λRe3 in (1), as its direction (i.e., Re3) can be controlled only
through the rotational motion (2), although its magnitude (i.e.,
λ) can be directly assignable. On top of this, the mass parameter
m is also in general uncertain. This then means that, instead of
implementing the ideal control −λRe3 = −mge3 + ν(m, x, ẋ, t)
to attain the target dynamics (3), we rather would merely be able
to implement the following control action

− λRe3 = −m̂ge3 + ν(m̂, x, ẋ, t) + νe (6)

where m̂ > 0 is the estimate of the m, and νe ∈ ℜ
3 is the

control generation error due to the quadrotor’s under-actuation.
The closed-loop dynamics of the quadrotor then becomes

mẍ = ν(m̂, x, ẋ, t) + m̃ge3 + νe (7)

instead of (3), where

m̃ := m − m̂

is the mass estimation error.
Similar to (4), now, we suppose that this ‘‘real’’ closed-loop

dynamics (7), under the parameter uncertainty and the quadrotor’s
under-actuation, can also be written as the following dynamics
equation

ξ̇ = f (ξ , t, νe, m̃) (8)

where f : ℜ
m

× ℜ
+

× ℜ
3
× ℜ → ℜ

m defines the dynamics with
its asymptotically stable equilibrium at ξ = 0 when (νe, m̃) = 0.
We further assume that this dynamics (8) possesses the following
(strict state) passivity property with (νe, m̃) ∈ ℜ

4 as its input and
y(ξ , t) = (y1(ξ , t), y2(ξ , t)) ∈ ℜ

4 as its output [17]:

dW1

dt
= −ξ TQ ξ + yT1(ξ , t)νe + y2(ξ , t)m̃ (9)

where W1 :=
1
2ξ

TPξ is a storage (or Lyapunov) function with
P,Q ∈ ℜ

m×m being positive-definite and symmetric matrices. See
Fig. 2. This passivity property (9) turns out to be crucial for our
design of adaptive backstepping control as follows.

Now, let us augment the storage functionW1 s.t.

W := W1 +
1

2γ1
νT
e νe +

1
2γ2

m̃2
where γ1, γ2 > 0 are the gains. Differentiating thisW , we obtain

dW
dt

= −ξ TQ ξ + yT1νe + y2m̃ +
1
γ1

νT
e ν̇e −

1
γ2

m̃ ˙̂m

with ˙̃m = − ˙̂m from m being a constant. This then suggests the
following backstepping and adaptation laws:

ν̇e = −γ1y1(ξ , t) − ανe (10)

˙̂m = γ2y2(ξ , t) (11)

where α > 0 is the backstepping gain. With these backstepping
and adaptation laws (10)–(11), we then have

dW
dt

= −ξ TQ ξ − ανT
e νe ≤ 0

implying thatW is bounded, and so are νe, ξ and m̃.
Moreover, from Barbalat’s lemma [16], we can also show that,

if ξ̇ and ν̇e are bounded, Ẇ → 0. For this, we assume that f (ξ , t,
νe, m̃) and yi(ξ , t) are bounded, if ξ, νe, m̃ are bounded. These as-
sumptions then imply that ξ̇ in (8) and ν̇e in (10) are bounded, as
the boundedness of ξ, νe, m̃ have already been established above.
With Ẇ → 0, we can then conclude that (ξ , νe) → 0, meaning
that the control objective (5) is grantedwith the control generation
error νe also vanishing, even though the system is under-actuated
with parametric uncertainty inm, The parameter convergence of m̃
can also be achieved under the standard persistence of excitation
condition [16].

Although the adaptation law (11) can be directly implemented
(i.e., integrated in software), the backstepping law (10) must be
‘‘decoded’’ into the real control inputs λ and w in (1)–(2). For this,
similar to [5], differentiating (6) with (2), the following decoding
relation can be obtained

[(λ̇ + αλ)R + λRS(w)]e3 = ν̄

where

ν̄ := −


d
dt

+ α

 
ν(m̂, x, ẋ, t) − m̂ge3


+ γ1y1(ξ , t). (12)

By using the structure of the skew-symmetric S(w), the above
equation can be simplified s.t. λw2

−λw1

λ̇ + αλ

 = RT ν̄. (13)

We can then compute the control inputs (λ, w1, w2) from (13)
as follows: (1) compute w2, w1 by dividing the first and second
rows of the RHS of (13) by λ if λ ≠ 0, and (2) integrate λ by
solving the differential equation in the last row of (13). Assuming
λ ≠ 0 (to obtain w1, w2) is typical for quadrotor control (i.e., no
free-fall [8–10]). Note from (13) that, for the Cartesian position x
control,we only needλ, w1 andw2, yet, notw3. This is again typical
for the quadrotor control [8–10]. We may simply set w3 = 0 or
use it for other purpose (e.g., on-board camera pointing operation).
By considering the attitude kinematics with a certain low-level
angular velocity tracking controller assumed, our control decoding
equation (13) is substantially simpler (thus, easier to implement
in practice) than that in [9,10], which is based on the full attitude
dynamics.

The following Theorem 1 summarizes our design of passivity-
based adaptive backstepping control so far. The parameter conver-
gence of m̂ in Theorem 1 is also due to the standard persistency of
excitation argument of adaptive control [16].
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Theorem 1. Consider the quadrotor (1)–(2) with the passivity
property (9) and δ ≈ 0 under the backstepping and adaptation
laws (13) and (11). Then, (ξ , νe, m̃) is bounded ∀t ≥ 0. Suppose also
that f (ξ , t, νe, m̃) and yi(ξ , t) are bounded if ξ, νe, m̃ are bounded.
Then, (ξ , νe) → 0. Furthermore, suppose that y2(ξ , t) ∈ ℜ can be
parameterized s.t.

y2(ξ , t) = ξ TΓ Y2(t) (14)

with Γ ∈ ℜ
m×m. Then, m̂ → m, if the following persistence of

excitation condition holds: ∃ strictly positive ε, T > 0 s.t., t+T

t
Y T
2 (τ )Γ TΓ Y2(τ )dτ ≥ ε

for all t ≥ 0.

Note that the backstepping control (13) requires an access to
the quadrotor’s Cartesian acceleration ẍ due to the presence of
the term d

dt ν(m̃, x, ẋ, t) in (12). For this, we may use an on-board
accelerometer to directly measure ẍ, which is typically installed on
most of commercial quadrotor platforms; or, as suggested in [5],
use the dynamics equation itself (1) to obtain the estimate of ẍ s.t.

ˆ̈x := −
λ

m̂
Re3 + ge3 (15)

where m̂ is the adaptive estimate ofm, which is typically projected
to a certain strictly-positive interval reflecting the likely value ofm
(i.e., m̂ ∈ [m,m], 0 < m ≤ m ≤ m).

From our experience, we found that, particularly when the
disturbance δ in (1) is small (e.g., quadrotor flies indoor with
no physical interaction with human/environment), this usage of
dynamics equation to estimate ẍ in (15) is often adequate and
outperforms the usage of accelerometer, which suffers from noise
and bias. The following Lemma 1 further justifies our usage of the
dynamics equation to estimate ẍ by showing the robustness of
our control scheme against the bounded error in the acceleration
estimation.

Lemma 1. Consider the quadrotor (1)–(2) with the passivity prop-
erty (9) and δ ≈ 0 under the backstepping and adaptation laws (13)
and (11). Suppose that m̃ and ∂ν(m̂,x,ẋ,t)

∂ ẋ are bounded, and y2(ξ , t) is
linearly-parameterizable as given in (14) with bounded Y2(t). Then,
if the acceleration estimation error ˜̈x := ẍ − ˆ̈x is bounded, (ξ , νe) is
ultimately bounded [17].

Proof. The acceleration estimate error ˜̈x perturbs the expression
of (12) s.t.,

ν̄ = −


d
dt

+ α

 
ν − m̂ge3


+ γ1y1(ξ , t) +

∂ν

∂ ẋ
˜̈x

and, consequently, the backstepping law (10) is also perturbed by

ν̇e = −γ1y1 − ανe −
∂ν

∂ ẋ
˜̈x

where arguments are omitted for brevity. Define

W ′
:= W1 +

1
2γ1

νT
e νe

with W1 =
1
2ξ

TPξ is positive definite. We can then show that,
using (14),

dW ′

dt
= −ξ TQ ξ − ανT

e νe + ξ TΓ Y2m̃ −
1
γ1

νT
e
∂ν

∂ ẋ
˜̈x (16)

which shows the ultimated boundedness of (ξ , νe), as the first
two terms on the RHS define exponential stability of (ξ , νe), while
the other two terms are linear in (ξ , νe) with other terms there
bounded. �
This Lemma 1 then shows that, even if the acceleration estimate
ˆ̈x is imprecise (e.g., by using dynamics equation), the states will
be eventually bounded and stay bounded thenceforth. Of course,
the more precise the acceleration estimate ˆ̈x gets, the closer the
quadrotor’s behavior converges to the desired one as specified
in Theorem 1. In the next two subsections, we will provide
examples of our passivity-based adaptive backstepping control
for the two important control objectives, namely, velocity field
following (Section 3.1) and timed-trajectory tracking (Section 3.2).

3.1. Example 1: velocity field following

Let us define a vector field V on the Cartesian position x of the
quadrotor (1)–(2)

V : x ∈ ℜ
3

→ V (x) ∈ ℜ
3

where V (x) defines the desired velocity at the Cartesian position x.
The control objective is

ẋ → V (x)

as t → ∞. To achieve this velocity field following, similar to (6),
we design the control action s.t.,

− λRe3 := −m̂ge3 + m̂V̇ − b(ẋ − V )  
=:ν(m̂,x,ẋ,t)

+νe (17)

where b > 0 is the control gain and V̇ :=
∂V
∂x ẋ, with the ij-th

component of ∂V
∂x ∈ ℜ

3×3 given by ∂V
∂x


ij =

∂Vi
∂xj

.
Injecting this control (17) to (1) with δ ≈ 0, we can obtain the

closed-loop Cartesian dynamics s.t.,

mėv + bev = m̃(ge3 − V̇ ) + νe

where ev := ẋ − V . We can further show that this closed-loop
dynamics satisfies the passivity property (9) with ξ = ev ∈ ℜ

3

and W1 =
1
2mξ T ξ , that is,

dW1

dt
= −beTvev + eTvνe + m̃eTv(ge3 − V̇ )

with y1 = ev and y2 = eTv(ge3 − V̇ ). Then, from (10)–(11), the
backstepping and adaptation laws are given by

ν̇e = −γ1ev − ανe

˙̂m = γ2eTv(ge3 − V̇ )

where γ1, γ2 > 0 are the control gains. With the uncertainty in
m, the decoding equation (13) of the backstepping law can also be
written as

ν̄ = −m̂


d
dt


∂V
∂x


ẋ +

∂V
∂x

ˆ̈x


− b

ˆ̈x − V̇


− ˙̂m(ge3 − V̇ )

− α

m̂V̇ − b(ẋ − V ) − m̂ge3


+ γ1ev

where ˆ̈x is the acceleration estimate as obtained in (15).
This completes the design example of the passivity-based

adaptive backstepping velocity field following control. Notice
that the designed control satisfies all the structural properties
required for Theorem 1 and Lemma 1; thus, the boundedness and
convergence of (ξ , νe, m̃) will be guaranteed under some suitable
conditions as speculated in Theorem 1 and Lemma 1. Note also
that the persistency of excitation condition in Theorem 1 will be
granted if Y2(t) = ge3 − V̇ (or, simply V̇ ) is ‘‘rich’’ enough all the
time (with Γ = 1). See also Section 5 for the experimental results
of this adaptive backstepping control.
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3.2. Example 2: trajectory tracking

Suppose that we want the Cartesian position x of the quadrotor
(1)–(2) to track a timed-trajectory xd(t) ∈ ℜ

3. Here, we assume
that ẋd(t), ẍd(t),

...
xd(t) be all bounded. Then, similar to (6), we

implement the following trajectory tracking control action:

− λRe3 = m̂ge3 + m̂ẍd − bė − ke  
=:ν(m̂,x,ẋ,t)

+νe (18)

where e(t) := x(t) − xd(t) is the tracking error, b, k > 0 are
damping/spring gains, and νe ∈ ℜ

3 is the control generation error
due to the quadrotor’s under-actuation. The control objective is
then (ė, e) → 0.

With the control action (18), the quadrotor’s closed-loop
Cartesian dynamics becomes

më + bė + ke = m̃(ge3 − ẍd) + νe

where m̃ = m − m̂. This closed-loop dynamics possesses the pas-
sivity property (9) as follows. First, define ξ = [ė; e] ∈ ℜ

6 and
W1 =

1
2ξ

TPξ with

P :=


m εm
εm k + εb


⊗ I3

where⊗ is the Kronecker product, I3 ∈ ℜ
3×3 is the identitymatrix,

and ε > 0 is a small number to be specified shortly.
We can then show that

dW1

dt
= −ξ TQ ξ + (ė + εe)Tνe + m̃(ė + εe)T (ge3 − ẍd)

where

Q :=


b − εm 0

0 εk


⊗ I3.

Thus, if we choose ε > 0 small enough s.t.,

0 < ε < b/m

P,Q will both become positive-definite, thereby, the passivity
relation (9) is achieved with y1 = ė+ εe and y2 = (ė+ εe)T (ge3 −

ẍd). Note that y2 also satisfies the linear parameterization condition
(14) with Γ = [I3; εI3] ∈ ℜ

6×3 and Y2(t) = ge3 − ẍd ∈ ℜ
3.

Therefore, from (10)–(11), the backstepping and adaptation
laws are given by

ν̇e = −γ1(ė + εe) − ανe

˙̂m = γ2(ė + εe)T (ge3 − ẍd)

where γ1, γ2 > 0 are the control gains. The decoding equation (13)
can also be written by

ν̄ = −m̂
...
xd + b(ˆ̈x − ẍd) + kė + ˙̂m(ge3 − ẍd) (19)

− α

m̂ẍd − bė − ke − m̂ge3


+ γ1(ė + εe) (20)

where ˆ̈x is the acceleration estimate as suggested in (15).
Since this adaptive backstepping trajectory tracking control

satisfies all the structural properties of Theorem 1 and Lemma 1,
the boundedness and/or the convergence of (ξ , νe, m̃) can be
ensured under the conditions as given in Theorem 1 and Lemma 1.
Note also that the persistency of excitation of Theorem 1 will be
achieved if Y2(t) = ge3 − ẍd ∈ ℜ

3, or, equivalently, the desired
trajectory ẍd keeps exciting the adaptation dynamics of m̃. See
Section 4, where this adaptive backstepping trajectory tracking
control is utilized as a low-level control for the problem of haptic
teleoperation of a quadrotor over the Internet. See also Section 5
for some of its relevant experimental results.
4. Haptic teleoperation of quadrotor over the internet

In this section, we apply our adaptive backstepping trajectory
tracking control of Section 3.2 to the recently proposed semi-
autonomous teleoperation framework in [2]. For this, we also
introduce a certain dynamic-extension like filter to allowour adap-
tive backstepping tracking control to be used with discontinuous
signals received from the Internet.We also present a complete sta-
bility and collision avoidance analysis with our adaptive backstep-
ping trajectory tracking control also included.

More precisely, at the slave side,we simulate the following first-
order kinematic Cartesian virtual point (VP):

ṗ = ηq̄(t) −
∂ϕT

o

∂p
(21)

where p ∈ ℜ
3 is the VP’s Cartesian position, q̄(t) ∈ ℜ

3 is the
output of a smoothing filter reflecting the master device’s posi-
tion q(t) ∈ ℜ

3 received from the digital/discontinuous Internet
communication (see below), η > 0 is to match the scale differ-
ence between the master position q and the VP’s velocity ṗ, and
ϕo(∥p−po∥) is the obstacle avoidance potential, which produces a
repulsive force when p approaches the obstacle located at po. The
adaptive backstepping trajectory control is then used to drive the
quadrotor’s Cartesian position x to track this VP’s position p as close
as possible (i.e., p = xd).

Although other types of filters may be used, here, for simplicity,
we use the following simple second-order filter to computed the
filtered master position q̄(t) for (21):

¨̄q(t) + 2b′ ˙̄q(t) + k′q̄(t) = k′q(k) (22)

where q(k) ∈ ℜ
3 is the (discontinuous) master device’s position

q(t) ∈ ℜ
3 received from the Internet at the slave reception time tsk,

and b′, k′ are the filter gains. Instead of directly using discontinuous
q(k) for (21) (as done in [2]), here, we utilize this filtered master
position q̄(t) and enforce x(t) → q̄(t). This is necessary since,
as can be seen from (19), our adaptive backstepping trajectory
tracking control requires not only p, ṗ but also p̈,

...
p , which become

ill-defined with q(k) switchings at the data reception time tsk.
Requiring such high-order derivatives of the desired trajectory is in
fact common for most of the quadrotor trajectory tracking control
results (e.g., [8–10,13,14]).

Suppose that q(k) is bounded, which will be enforced below by
using the passive set-position modulation (PSPM) technique [18].
Then, ¨̄q(t), ˙̄q(t), q̄(t) are all bounded due to (22). We can also
compute p̈ and

...
p s.t., from (21),

p̈ = η ˙̄q(t) − Hϕo(p)ṗ (23)

...
p = η ¨̄q(t) − Hϕo(p)p̈ −

dHϕo(p)
dt

ṗ (24)

where Hϕo(p) :=


∂2ϕo
∂pi∂pj


∈ ℜ

3×3 is the Hessian of ϕo. With

p, ṗ, p̈,
...
p all well-defined, now, we can apply our adaptive back-

stepping trajectory tracking control of Section 3.2 to enforce
x(t) → p(t).

Note that, through the term ηq̄(t) in (21), human users can
tele-control the VP’s velocity ṗ by the master device’s position
q(t), thereby, circumvent the problem of master–slave kinematic
dissimilarity (i.e. stationary master’s workspace is bounded, yet,
that of the mobile slave quadrotor is unbounded [19,20]). The
kinematic VP (21) is also adopted here as done in [2] in contrast to
the dynamic VPs (e.g., [3]), since it can greatly simplify the collision
avoidance analysis as shown in the next Proposition 1.
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To derive Proposition 1, let us denote the ultimate bound of ∥ξ∥

in (16) of Lemma 1 by ξmax s.t., ξmax ≥ ∥ξ(t)∥ for all t ≥ 0, where
ξ = [ẋ − ṗ; x − p] in this case. Let us also assume that: (1) the
avoidance potential ϕo is constructed s.t.: (i) there exists a large
enough M̄ > 0 s.t. ϕo(∥p−po∥) ≤ M̄ implies ∥p−po∥ > ξmax; and
(ii) if ϕo(∥p − po∥) gets very large, so does ∥∂ϕo/∂p∥; and also (2)
we set the filter coefficients b′, k′ of (22) to be critically damped.

Proposition 1. Suppose q(t) is bounded, i.e., ∃qmax ≥ 0 s.t. qmax ≥

∥q(t)∥ ∀t ≥ 0. Suppose further that, if ϕo(∥p − po∥) ≥ M̄,∂ϕo

∂p

 > ηqmax (25)

where η is the scaling factor in (21). Then, ϕo ≤ M̄ and ∥x − po∥ >
0 ∀t ≥ 0 (i.e., no collision). Suppose further that ∂ϕ2

o/∂pi∂pi and
∂ϕ3

o/∂pi∂pi∂pk are bounded if ϕo ≤ M̄. Then, ṗ, p̈,
...
p are all bounded.

Proof. Differentiating ϕo(∥p − po∥), we can have

ϕ̇o =
∂ϕo

∂p


ηq̄(t) −

∂ϕT
o

∂p


= ηqmax

∂ϕo

∂p

 −

∂ϕo

∂p

2

(26)

where we also use the fact that the l1-norm of the impulse re-
sponse h(t) of the filter equation (22) with the critically-damped
(b′, k′) is ∥h(t)∥1 = 1, so that ∥q̄(t)∥max = qmax. Now, suppose
that, at a certain instance, ϕo > M̄ . At that time, however, due to
the assumption (25) and the quadratic structure of (26), we must
have dϕo/dt < 0. This then implies that ϕo(∥p − po∥) ≤ M̄ .
Thus, we have ∥p − po∥ > ξmax, and, consequently, ∥x − po∥ ≥

∥p− po∥−∥x− p∥ > ξmax − ξmax = 0, that is, no collision. Bound-
edness of ṗ, p̈,

...
p can also be easily seen from their expressions (21),

(23), (24), with the fact that ˙̄q, ¨̄q are bounded with bounded q(t),
since the filter itself (22) is stable. �

With ṗ, p̈,
...
p now shown to be bounded, we may then apply

the adaptive backstepping trajectory tracking control of Section 3.2
to drive the quadrotor’s position x to track the VP’s position p.
Boundedness of q(t) in Proposition 1 will also be guaranteed by
applying passive set-position modulation (PSPM) technique at the
master site as elucidated below.

To allow the user to perceive the presence of the obstacle and
also the state (i.e., velocity) of the quadrotor, we also design the
haptic feedback signal y(t) ∈ ℜ

3 to be sent from the slave site to
the master device, s.t.

y(t) :=
1
η


ẋ +

∂ϕT
o

∂p


(27)

where the two terms, ẋ/η and (1/η)∂ϕT
o /∂p, are typically

complementary, i.e., during the free cruise flying with no obstacles
around, ∂ϕT

o /∂p ≈ 0, whereas during the contact with an obstacle,
ẋ ≈ 0.

This y(t) is then sent to the master site over the Internet. Let us
denote by y(k) its reception at the master site over the Internet at
the (master) reception time tmk . We incorporate this y(k) into the
PD-type coupling τ for the master device s.t.

τ(t) := −Bq̇ − K1q − K(q − ȳ(k)) (28)

for t ∈ [tmk , tmk+1), where B, K1, K ≻ 0 are diagonal gain matrices,
and ȳ(k) is a certainmodulation of y(k) (to be defined below). Here,
the spring action K1 is included to provide haptic feedback of y(t)
even when K attempts ∥q(t) − ȳ(k)∥ → 0. On the other hand, the
damping B is included to avoid oscillatory behavior.

If we use y(k) directly in (28), the PD-coupling (28) can
generally become unstable. To address this problem, as proposed
x [m]y [m]

z 
[m

]

Fig. 3. Adaptive backstepping velocity field following: 3D trajectory.

in [2], we adopt here passive set-position modulation (PSPM) [18],
which is more flexible (e.g., passive feedback of y(k)) and less
conservative (i.e., selective activation of passifying action only
necessary) than conventional time-invariant passivity-enforcing
frameworks. More precisely, at each tmk , ȳ(k) in (28) is computed
s.t.

min
ȳ(k)

∥y(k) − ȳ(k)∥

subj. E(k) = E(k − 1) + Dmin(k − 1) − 1P̄(k) ≥ 0

where E(k) ≥ 0 is the virtual energy reservoir;

1P̄(k) :=
1
2


∥q(tmk ) − ȳ(k)∥2

K − ∥q(tmk ) − ȳ(k − 1)∥2
K


is the modulated spring energy jump at tmk with ∥x∥2

A := xTAx; and

Dmin(k) :=
1

tk+1 − tk

3
i=1

bi(q̄i(k) − q
i
(k))2

is the reharvesting of the (otherwise waster) energy dissipation
via B, with bi > 0 being the ith diagonal element of B, qi the
ith element of q, and qi(k)/qi(k) the max/min of qi(t) during
[tk, tk+1), i = 1, 2, 3. Note that this PSPM is implemented only
for the master side. Also, since the human operator usually keeps
injecting energy into the master, E(k)may keep increasing as well.
To avoid excessive energy accumulation in E(k), we ceil off E(k), by
discarding any energy over a certain threshold Ē. See [18] for more
details on PSPM. The following Theorem 2 can be shown similar
to [18,2]; thus, its proof is omitted here.

Theorem 2. (1) The master device with PSPM-modulated control
(28) is closed-loop passive, that is, ∃ c1 ∈ ℜ s.t.,

 T
0 f T q̇dt ≥ −c21 ,

∀T ≥ 0, where f , q̇ ∈ ℜ
3 are the human force and velocity.

Moreover, if the human user is passive (i.e. ∃ c2 ∈ ℜ s.t.,
 T
0 f T

q̇dt ≤ c22 , ∀T ≥ 0), the closed-loop VP’s teleoperation system is
stable, with q̇, q, q − ȳ(k), and ṗ all bounded.

(2) Suppose further that q̈, q̇ → 0, E(k) > 0 ∀k ≥ 0, and (x, ẋ) =

(p, ṗ). Then, (a) if ∂ϕo/∂p = 0 (e.g. no obstacles), f (t) →
K1
η
ẋi

(i.e. UAV velocity perception); or (b) if ẋ = 0 (e.g. stopped by
obstacles), f (t) →

K1
η

∂ϕo/∂p (i.e. collective obstacle perception).
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x [m]
y 

[m
]

Fig. 4. Adaptive backstepping velocity field following: 2-D view of velocity field
and trajectory.

Notice the flexibility in designing/using the haptic feedback
y(t) (27) provided by PSPM. Other forms of y(t) can also be pos-
sible without jeopardizing passivity. How to choose this haptic
feedback form y(t) to maximize human perception is an interest-
ing research topic and we spare it as a future research topic. The
item (1) of Theorem 2 and Proposition 1 essentially establishes
master-passivity/slave-stability of the closed-loop teleoperation
system, which, we believe, would likely provide a sharper perfor-
y [m]

z 
[m

]

x [m]

Fig. 7. Adaptive backstepping trajectory tracking: 3D trajectory.

mance than (more conservative) master-passivity/slave-passivity,
and also more adequate and also sufficient here, as the quadrotor
interacts only with the virtual obstacle avoidance force, which is
precisely known. Experimental results of this haptic teleoperation
scheme are presented in Section 5.

5. Experiments

In this section we report the results of three experiments to
validate the proposed adaptive backstepping control laws: ve-
Fig. 5. Adaptive backstepping velocity field following: velocity following error and estimated mass m̂.
Fig. 6. Adaptive backstepping velocity field following: acceleration via dynamics equation (15) and from on-board accelerometer (low-pass-filtered).
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Fig. 8. Adaptive backstepping trajectory tracking: tracking error and estimated mass m̂.
Fig. 9. Adaptive backstepping trajectory tracking: acceleration via dynamics equation (15) and from on-board accelerometer (low-pass-filtered).
locity field following, timed trajectory tracking, and its applica-
tion to haptic teleoperation over the Internet. We use Ascending
Technologies R⃝ Pelican as our quadrotor. Xbee, a radio module, is
used to communicate with a control PC so that a human user can
receive sensor information from the UAV and send control com-
mand for the thrust force and angular velocity. The quadrotor is
powered by the LiPo 6000 mAh battery and its maximum velocity
is 50 km/h and maximum payload is 650 g. It also has 4 brush-less
motors, Atom processor board, IMU, and GPS. The real mass of the
UAV is about 800 g, and we found m̂ converges to a value simi-
lar to that. For the experiment, we use Vicon R⃝ with 8 Bonita cam-
eras with 100 Hz to measure rotation and translation information
of the quadrotor. For the teleoperation, we also used a haptic de-
vice, Force Dimension R⃝, Omega 3, whose maximum force is 12 N,
linear resolution is 0.01 mm, and rate is up to 8 kHz. In our exper-
iment, the haptic signal is updated with 2 kHz.

5.1. Adaptive backstepping velocity field following

We define 3D velocity field that has 0.9 m radius limit cycle at
the 1 m height so that the desired path make a circular trajectory
at 1 m. To verify the effectiveness of adaptive control, experiment
with an underestimatedmass of theUAV is performed. Fig. 3 shows
that the z-directionalmotion cannot converge to the desired height
even though 2-Dimensional motion follows the desired velocity
field well (Fig. 4). This shows that the adaptation is necessary to
maintain the desired height. The blue solid line in Fig. 3 represents
the real trajectory with adaptive control. Even if the initial mass is
set to be 0.55 g, the UAV can fly at the desired height.

We also stop the UAV during the flight by hand around 5 and
11 s. One can then see from Figs. 3 and 5 that, when we push the
UAV, the velocity error increases. However, after the pushing ends,
the quadrotor resumes to follow the velocity field and velocity
error decreases again. Fig. 6 shows the estimated accelerationusing
the dynamics equation (15) and that measured (and low-pass-
filtered) from the on-board accelerometer. From there, we can see
that the estimated acceleration matches well with the measured
acceleration most of the time, except: in the beginning, where the
error in the estimated mass m̂ is significant, and at times of the
human-pushing with δ in (1) not negligible anymore.

5.2. Adaptive backstepping trajectory tracking

Similarly to the previous experiment, we set the desired timed
trajectory that makes a circle at a certain height. First, we set the
mass as 0.55 g without adaptive control and Fig. 7 shows the result
(yellow dotted line). From there, it is clear that, with no adaptation,
the quadrotor cannot attain the desired height. However, with
adaptive control, even though the initial mass is set to be 0.55 g,
the UAV can fly along the desired trajectory at the desired height
(blue solid line).

The position error e := x− xd converges to less than 0.1 mwith
the proposed adaptive backstepping control and the estimated
mass m̂ also converges to a stationary value (Fig. 8). This trajectory
tracking motion is more aggressive than that of the above velocity
field following as shown in Fig. 9, from which we can also see that
our estimated acceleration obtained using dynamics equation (15)
is adequate even for this fast motion.

5.3. Haptic teleoperation over the internet

In this experiment, we teleoperated the UAV over the imperfect
Internet communication with time varying delay and packet loss.
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Fig. 10. UAV trajectory using the haptic teleoperation with imperfect communication.
Fig. 11. Haptic teleoperation of UAV with delay varying from 20 to 60 ms.
The task goes as shown in Fig. 10: (1) at the beginning, the
human user starts at a certain position; (2) during the flight, user
should touch and feel an obstacle, which is located at the center
of the workspace; (3) the user then lands the quadrotor on the
specifically determined location #1; (4) if the user succeeds the
first landing, he starts to go to the next landing site #2; (5) during
this flight, the user again should touch and feel the obstacle before
the next landing; (6) after finishing all tasks including the second
landing to the site #2, the user operates the quadrotor to return to
the start point.

For this task scenario, we set the communication characteris-
tics as follows. For the first experiment, delay varies between 20
and 50 ms with the mean 35 ms, standard deviation 6.1 ms, and
the data loss rate 59.62%. Fig. 11 shows the result of the first exper-
iment. The haptic force feedback converges to the scaled velocity
(K1/ηẋ) at the steady-state as speculated in Theorem 2. When the
UAV approaches the obstacle, the user can feel the repulsive force
from the obstacle. At 10 and 25 s, the quadrotor touches the obsta-
cle and there appears force feedback peaks showing that the user
can feel the obstacle. During two landing tasks, the force peak is
because the user should push down the haptic device to land the
quadrotor.

In the second experiment, the delay varies between 400 and
600 ms, with the mean 500.1 ms, standard deviation 40.8 ms, and
loss rate is 81.24%. Even though the user performed the same task,
it takes 15 s more than the previous experiment because of the
longer delay and higher loss rate. It is particularly harder for the
user to precisely tele-control the quadrotor’s position so that the
landing tasks becomes more difficult than the first experiment.
Themore prominent fluctuations in Fig. 12 represent this difficulty
even in steady-state.
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Fig. 12. Haptic teleoperation of UAV with delay varying from 400 to 600 ms.
6. Conclusions

In this paper, we propose a novel unified passivity-based adap-
tive backstepping control framework for under-actuated ‘‘mixed’’
quadrotor-type UAVs, which accepts 1-DOF thrust force input and
3-DOF angular velocity input. The backstepping technique is used
to overcome the issue of the quadrotor’s under-actuation, while
the adaptive control approach to real-time estimate uncertain
mass parameter of the quadrotor. Its two examples, velocity field
following control and trajectory tracking control, are also worked
out. Its application to haptic teleoperation over the Internet is also
presented with dynamic-extension like filter to address discontin-
uous Internet communication and a complete stability/collision-
avoidance analysis provided. Experiments are also performed to
show the efficacy of the proposed theoretical results.

Some future research directions include: (1) elucidation of a
relation between the passivity condition (9) and the differential-
flatness of quadrotors [21]; (2) extension to more general classes
of under-actuated systems; and (3) perceptually-optimized design
of haptic signal y(t) in (27) and further human-subject study for
teleoperation with lossy-communication.
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