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Abstract— In this paper, we propose a real-time clothoid
tree-based path planning for self-driving robots. Clothoids,
curves that exhibit linear curvature profiles, play an important
role in road design and path planning due to their appeal-
ing properties. Nevertheless, their real-time applications face
considerable challenges, primarily stemming from the lack
of a closed-form clothoid expression. To address these chal-
lenges, we introduce two innovative techniques: 1) an efficient
and precise clothoid approximation using the Gauss-Legendre
quadrature; and 2) a data-efficient decoder for interpolating
clothoid splines that leverages the symmetry and similarity of
clothoids. These techniques are demonstrated with numerical
examples. The clothoid approximation ensures an accurate and
smooth representation of the curve, and the clothoid spline
decoder effectively accelerates the clothoid tree exploration by
relaxing the problem constraints and reducing the problem
size. Both techniques are integrated into our path planning
algorithm and evaluated in various driving scenarios.

I. INTRODUCTION

Self-driving robots, including autonomous vehicles and
delivery robots, have garnered substantial attention due to
their potential to revolutionize transportation. A critical as-
pect of these self-driving robots is ensuring road safety and
considering multi-modality, highlighting the importance of
a fast and feasible sampling-based local path planner. Early
efforts in this domain have relied on geometric primitives
(e.g., straight lines and circular arcs) for path candidates [1].
However, these motion primitives, while valuable, are only
G1 continuous at their joints, thereby sacrificing the conti-
nuity of steering angles. Another sampling-based approach
incorporates parametric curves, such as polynomials in the
Frenét frame [2], [3] and B-splines [4]. Nonetheless, these
methods often lack the requisite geometric interpretation
for wheeled vehicles, requiring additional considerations
regarding the curve attributes.

As an alternative, clothoids exhibit an advantageous fea-
ture of linear curvature profiles. This distinctive attribute
enhances driving comfort and eases path tracking, rendering
them suitable for self-driving robots. Moreover, clothoids
offer a wide range of curve shapes while ensuring G2

continuity. Owing to their appealing properties, clothoids find
extensive applications in intersection, highway, and railway
design. Refer to [5] for the computer-aided design (CAD) of
clothoid splines and their applications in highway design.

This work is supported by Technology Innovation Program (20024355,
Development of autonomous driving connectivity technology based on
sensor-infrastructure cooperation) funded by the Ministry of Trade, Industry
& Energy (MOTIE, Korea). Corresponding author: Dongjun Lee.

The authors are with the Department of Mechanical Engineering, Institute
of Advanced Machines and Design (IAMD) and Institute of Engineering
Research (IOER), Seoul National University, Seoul 08826, South Korea (e-
mail: minhyeong@snu.ac.kr; djlee@snu.ac.kr).

Fig. 1. Driving simulation using the clothoid tree-based path planning.

Motivated by the attractive properties of clothoids, we
propose a real-time clothoid tree-based path planning for
self-driving robots. For this, we introduce a G2 continuous
clothoid tree that addresses other feasibility constraints such
as maximum curvature and collision avoidance. However,
employing the clothoid tree poses considerable challenges
resulting from the lack of a closed-form expression of
clothoids. To address these challenges, we present two
innovative techniques: 1) an efficient and precise clothoid
approximation method using the Gauss-Legendre quadrature;
and 2) a data-efficient decoder for clothoid splines that in-
terpolates two given configurations, leveraging the symmetry
and similarity of clothoids under translation, rotation, scale,
and reflection transformations.

The effectiveness of these techniques is validated through
numerical examples. The proposed clothoid approximation
method guarantees smooth parameterization and small error
of machine epsilon, approximately 2.22×10−16m for a one-
meter arc length, with reasonable computational complexity.
The clothoid spline decoder effectively accelerates the tree
exploration by relaxing the problem constraint and reducing
the problem size while exhibiting millimeter-level accuracy,
averaging 0.0048 ± 0.0056m error over a one-meter path.
Both techniques are seamlessly integrated into our path
planning algorithm and driving scenarios as in Fig. 1. The
resultant planning time is 0.0179±0.0018s without collision
checks and 0.0535± 0.0214s with collision checks.

Like our approximation approach, prior studies employed
numerical methods for clothoid calculation, falling into three
major categories. The first category relies on well-established
numerical integration methods like the midpoint and trape-
zoidal rules. These methods sacrifice continuous representa-
tions and demand a high computational cost for precision.
Higher-order numerical quadrature is known to provide better
accuracy, yet, to our knowledge, no prior works have utilized
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Fig. 2. Left. A clothoid segment. The inverse of the local curvature is the radius of the osculating circle. Right. A clothoid tree. The adjacent clothoids
are G2 continuous. Light red markers are the target configurations, and the dark blue line is the new branch clothoid spline.

them due to the numerical complexity. Our adaptation of the
Gauss-Legendre quadrature [6, Chapter 25.4] is the very first
result along this line. The second category adopts easily com-
putable curves for clothoid approximations, such as Bézier
and B-spline curves [7], s-power series [8], and circular arc
splines [9], imposing a considerable computational burden
from the high-order curve optimization. The last category
combines precomputed lookup tables with easy-to-compute
curves, offering commendable speed and accuracy. For exam-
ple, [10] utilizes circular arc interpolations, and [11] adopts
Bézier curves. These numerical methods, however, have been
focused on approximating clothoid segments and have not
been integrated into comprehensive local path planning, as
we attain in this paper.

On the other hand, there have been notable attempts to
incorporate clothoids into local path planning. In [12], the
combination of clothoids and circular arcs are exemplified for
a lane change path optimization, while using rational approx-
imations of Fresnel integrals [6, Chapter 7.3] for clothoid
calculations. Authors in [13] use precomputed cornering
paths consisting of two clothoids and one circular arc to
control an Audi TTS at the limits. In [14], [15], clothoid
tentacles are employed for local path planning. Despite all
these efforts, the resultant path shape is restricted and may
not be sufficient to address the intricate driving scenarios.

To address complex scenarios, clothoid tree-based meth-
ods have been introduced. In [16], a random clothoid tree is
utilized to generate an optimal racing line, incorporating G1

fitting with clothoids [17]. For autonomous parking, [18] in-
troduces a target-oriented clothoid tree. These clothoid tree-
based approaches focus solely on achieving G1 continuity
at their joints and do not address real-time path planning.
While [19] suggests an interpolating clothoid spline with
G2 continuity, it is also unsuitable for real-time applications
due to its nonlinear programming formulation. Importantly,
our work stands out as the first to employ a G2 continuous
clothoid tree and a data-driven interpolating clothoid spline
decoder for the real-time local path planning.

The remainder of this paper is organized as follows:
Section II introduces the proposed path planning framework;
Section III details the clothoid approximation method and
presents its numerical examples; Section IV details the
clothoid spline decoder and presents its numerical examples;
Section V demonstrates the proposed algorithm in driving
scenarios; and Section VI concludes the paper.

II. CLOTHOID TREE-BASED PATH PLANNING

Our path planning algorithm relies on a tree structure
that incorporates clothoids, referred to as a clothoid tree,
to guide the robot towards the target configurations. This
clothoid tree-based path planning consists of two steps:
1) expanding the tree from the initial configuration to the
predefined target configurations; and 2) selecting the optimal
path from the expanded tree with the minimum overall cost.
The tree exploration and the path selection steps, as well as
the definition of clothoids and clothoid trees, are detailed in
the following subsections.

A. Clothoid
Clothoids are characterized by their linear curvature κ :

R≥0 → R and quadratic tangent angle ϕ : R≥0 → R s.t.

κ(s) = κ0 + σs (1)

ϕ(s) = ϕ0 + κ0s+
σ

2
s2 (2)

where s ∈ R≥0 is the arc length parameter, ϕ0 ∈ R is the
initial heading angle, κ0 ∈ R is the initial curvature, and σ ∈
R is the curve sharpness. Then the parametric representation
of clothoids can be expressed as[

x(s)
y(s)

]
=

[
x0

y0

]
+

∫ s

0

[
cos
sin

](
ϕ0 + κ0ξ +

σ

2
ξ2
)
dξ (3)

where (x0, y0) ∈ R2 is the initial position and (cos, sin)(·) :
R → R2 is the unit tangent vector operator. See Fig. 2 for
the visualization of clothoids. It is important to note that an
analytical solution of (3) is not available, necessitating the
usage of numerical integration, as elaborated in Section III.

B. Clothoid Tree
The clothoid tree is defined as a directed rooted tree, where

each edge exhibits a linear curvature, and adjacent edges are
G2 continuous. The tree can be represented as a tuple:

CT = (V, E , gendpoints, gl, gx, gy, gϕ, gκ) (4)

where V is a set of vertices, E is a set of edges, and g⋆
denotes property functions associated with each vertex and
edge. Specifically, gendpoints : E → V × V provides the tail
and head vertices of each edge, gl : E → R≥0 provides
the arc length of each edge, and gx, gy, gϕ, gκ : V → R
provides the configuration of each vertex. The root vertex of
the tree corresponds to the initial state, while the leaf vertices
correspond to the predefined target configurations, see Fig. 2.
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C. Clothoid Tree Expansion

Similar to other tree exploration algorithms, the clothoid
tree expands iteratively by adding a new branch as illustrated
in Fig. 2. During the iteration, the previous tree (Vprev, Eprev)
and the current target configuration (x, y, ϕ)target are given.
The new branch, an N -segment clothoid spline to be added to
the tree, is denoted by (Vnew, Enew) where Vnew = {vi}Ni=0

is a sequence of vertices and Enew = {ei}Ni=1 is a sequence of
edges such that gendpoints(ei) = (vi−1, vi). The tail vertex,
or the parent vertex v0 ∈ Vprev ∩ Vnew, is selected from the
previous vertex set Vprev. The head vertex vN is positioned to
meet the target configuration by (x, y, ϕ)N = (x, y, ϕ)target.
The resultant expanded tree is denoted by (Vnext, Enext) with
Vnext = Vprev ∪ Vnew and Enext = Eprev ∪ Enew. Although
the target curvature constraint κN = κtarget is available, it
has been observed that the position and heading constraints
are adequate for the local path planning.

Then, each iteration of tree exploration can be formulated
as a mixed-integer programming (MIP) problem:

minimize
v0∈Vprev

{(x,y,ϕ,κ)i}N
i=1,{li}

N
i=1

Jexpand(vN , Eroot→N )

subject to (x, y, ϕ)N = (x, y, ϕ)target
|κi| ≤ κmax

dist(Oego(Enew),Oobs) ≥ ϵ

(5)

where v0 ∈ Vprev is the parent vertex to be selected from
the previous tree, {(x, y, ϕ, κ)i}Ni=1 and {li}Ni=1 are the new
vertex configurations and new edge lengths to be optimized,
Eroot→N = Eroot→0 ∪ Enew ⊆ Enext is the edge sequence
from the root vertex to the new head vertex, Jexpand(v, E) =
Jvert(v) +

∑
e∈E Jedge(e) is the objective function with the

vertex cost Jvert : V → R and the edge cost Jedge : E → R,
κmax ∈ R>0 is the maximum curvature of the ego vehicle,
ϵ ∈ R>0 is the safety margin, and dist(Oego(Enew),Oobs)
is the distance between the obstacles and the ego vehicle fol-
lowing the new branch. The compact set O⋆ can take various
representations such as ellipsoids, rectangles, capsules, or
occupancy grids, among other possibilities. Since iteratively
solving (5) is time-demanding, a data-driven decoder for the
new branch generation is proposed in Section IV.

D. Clothoid Path Selection

The clothoid path selection is relatively straightforward.
Essentially, the terminal vertex is chosen from the expanded
tree that minimizes the overall cost. This path selection cost
is defined as Jselect(v) = Jterminal(v)+Jexpand(v, Eroot→v)
where Jterminal : V → R is the terminal state objective such
as lane keeping and travel distance in the road Frenét frame.
Driving examples show the path selection in Fig. 5.

III. CLOTHOID APPROXIMATION

A fast and efficient approximation for (3) is presented
in this section. Let us consider a clothoid with the arc
length l ∈ R≥0 and endpoint configurations (x0, y0, ϕ0, κ0),
(x1, y1, ϕ1, κ1). To facilitate further expressions, the tan-
gent angle is reformulated as ϕ(η) = ϕ0 + lκ0

2 (η + 1) +
l(κ1−κ0)

8 (η+1)2 where η := 2s−l
l ∈ [−1, 1] is the normalized

arc length. Given (x, y, ϕ, κ)0 and κ1, the terminal heading
angle is obtained as ϕ1 = ϕ0+

l
2 (κ1+κ0), and the terminal

position is obtained as (x1, y1) = (x0, y0)+
l
2

∫ 1

−1
(cos, sin)◦

ϕ(η)dη. Since a closed-form solution of (x1, y1) is not
available, the Gauss-Legendre quadrature is employed.

The Gauss-Legendre quadrature approximates the definite
integral by a weighted sum of function evaluations as[

x1

y1

]
≈

[
x0

y0

]
+

l

2

n∑
i=1

wi

[
(cos ◦ϕ)(ηi)
(sin ◦ϕ)(ηi)

]
(6)

where n ∈ N is the number of nodes, {ηi} ∈ (−1, 1)n is
the set of nodes, and {wi} ∈ Rn

>0 is the set of weights.
The nodes are chosen as the roots of the degree n Legendre
polynomial satisfying Pn(ηi) = 0, and the weights are given
by wi := 2

(1−η2
i )(P

′
n(ηi))2

with P ′
n = dPn

dη . The quadrature
(6) precisely approximates the end position (x1, y1), but it
does not provide a continuous representation (x(s), y(s)).

Thus, we develop a smooth representation of the curve.
Similar to (6), we choose the parameterization:[

xgl(η)
ygl(η)

]
:=

[
x0

y0

]
+

l

2

n∑
i=1

wi(η)

[
(cos ◦ϕ)(ηi)
(sin ◦ϕ)(ηi)

]
(7)

where wi : [−1, 1] → R≥0 is the weight functions. From
the fact that the quadrature weight representations wi ≡∫ 1

−1
ℓi(η)dη are equivalent, wi(η) can be expressed as

wi(η) =

∫ η

−1

ℓi(ξ)dξ =

∫ η

−1

n∏
j=1,j ̸=i

ξ − ηj
ηi − ηj

dξ (8)

where {ℓi(·)}ni=1 is the degree n− 1 Lagrange polynomials.
Directly using (8), however, can be computationally demand-
ing and numerically unstable, especially when n is large.

Instead, we observe that the weight function (8) is a degree
n polynomial, which can be reconstructed by n+1 function
evaluations. Then wi(η) can be reformulated as

wi(η) =

n∑
j=0

wijℓ
+
j (η) =

n∑
j=0

wij

n∏
k=0,k ̸=j

η − ηk
ηj − ηk

(9)

where {wij} is the evaluated weights to be computed be-
low and {ℓ+j (·)}nj=0 is the degree n Lagrange polynomi-
als with the initial node η0 = −1. To efficiently obtain
{wij}, we arrange the derivatives d

dηwi(ηk) = ℓi(ηk) ≡∑n
j=0 wij

d
dη ℓ

+
j (ηk), where 1 ≤ i ≤ n in rows and 0 ≤

k ≤ n in columns, organizing them into a matrix form[
ℓi(ηk)

]
=

[
wij

][
d
dη ℓ

+
j (ηk)

]
with

[
ℓi(ηk)

]
∈ Rn×n+1,[

wij

]
∈ Rn×n, and

[
d
dη ℓ

+
j (ηk)

]
∈ Rn×n+1. The index

j = 0 is omitted because wi0 = 0 are known. Since the
differentiation matrix

[
d
dη ℓ

+
j (ηk)

]
has a closed-form solution

and has a rank of n, the weights can be obtained by[
wij

]
= pinv

([
d
dη ℓ

+
j (ηk)

])[
ℓi(ηk)

]
(10)

where pinv(·) is the pseudo-inverse operator. The nodes {ηi}
and weights {wij} can be precomputed to reduce the real-
time computation efforts. This approach ensures a smooth
and continuous representation of clothoids while maintaining
the accuracy of the Gauss-Legendre quadrature.
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Fig. 3. Top. An example of clothoid approximations with κ0 = 0, σ = π, and n = 10. Bottom-left. Approximation error e⋆(s) with κ0 = 0, σ = π,
and n = 10. Bottom-right. Normalized root-mean-square of the endpoint errors RMS(e⋆1/l) (dashed lines) and smooth parameterization errors RMS(e⋆rms/l)
(solid lines) with random curvatures κ0, κ1 ∈ [−2π, 2π] and varying number of nodes 7 ≤ n ≤ 55. The machine epsilon is approximately 2.22×10−16.

Numerical Examples

The approximation error is defined as the Euclidean
distance e⋆(s) := ∥(x⋆(s), y⋆(s)) − (x(s), y(s))∥2 where
⋆ indicates the approximation method. The endpoint error
is denoted by e⋆1 = e⋆(l), and the root-mean-squared er-
ror (RMSE) of the smooth parameterization is denoted by
e⋆rms = ( 1l

∫ l

0
(e⋆(ξ))2dξ)1/2. The true clothoid (x(s), y(s))

is obtained by an adaptive quadrature until the estimated
error falls below the machine epsilon.

The performance is compared to other numerical meth-
ods, including the midpoint and trapezoidal rules, piecewise
circular arcs, the Clenshaw-Curtis quadrature, and quintic
B-spline fitting. The midpoint and trapezoidal rules divide
the curve into n piecewise linear and quadratic functions,
respectively. The circular arc approximation uses n circular
arcs, whose curvatures are determined based on the segment
midpoint. The Clenshaw-Curtis quadrature is another class
of numerical integration method known to converge at a rate
similar to the Gauss-Legendre quadrature. Its smooth inter-
polation can be obtained by the Chebyshev polynomials of
the first kind. The quintic B-spline fitting involves regression
to the true clothoid data points rather than real-time curve
integration. It optimizes n control points minimizing ebsplinerms .

Clothoid approximation results are visualized in Fig. 3.
The initial position and heading are set to (x0, y0, ϕ0) = 0
because the shape of the curve is invariant to the translation
and rotation, and the length is set to l = 2. Our proposed
method achieves the smallest error, even outperforming the
quintic B-spline fitting obtained by the time-consuming op-
timization. The smooth parameterization of the Clenshaw-
Curtis quadrature is very close in performance to the pro-
posed method. However, our proposed method has a much
smaller endpoint error egl1 , which is crucial for the vertex
position constraints. The endpoint error of the proposed
method reaches the machine epsilon of the double precision

data type at n = 17. It is worth noting that if we use
(8) directly, the error eglrms could diverge at n ≥ 19 due
to the numerical instability. In terms of computational effi-
ciency, the midpoint, trapezoidal, and circular arc methods
necessitate more than 1 × 107 nodes for error saturation,
resulting in computation times exceeding 0.4s per curve.
Conversely, the proposed method maintains computational
efficiency (e.g., requiring less than 5 × 10−4s at n < 30)
without compromising performance.

IV. INTERPOLATING CLOTHOID SPLINE DECODER

The interpolating clothoid spline decoder is detailed in
this section. It generates clothoid splines that interpolate the
parent and target configurations (x, y, ϕ, κ)0, (x, y, ϕ)target,
relaxing the target constraint (x, y, ϕ)N = (x, y, ϕ)target and
reducing the problem size of (5). To simplify the problem,
we first consider N = 2, and assume that the parent vertex
configuration (x, y, ϕ, κ)0 is given. Then the clothoid spline
between v0 and v2 can be fully described by the arc lengths
l1, l2 and the curvatures κ1, κ2 using (1) to (3). Therefore,
when N = 2, the number of continuous decision variables
for the clothoid spline is 4, while the target constraint is
three-dimensional. This implies that when the configurations
(x, y, ϕ, κ)0 and (x, y, ϕ)2 = (x, y, ϕ)target are given, the
shape of two-segment clothoid spline (Vnew, Enew) can be
represented by a one-dimensional latent variable.

Here, we choose the ratio of the arc lengths γ := l1
l1+l2

as the latent variable, but generating the clothoid spline
from γ is non-trivial. Therefore, a data-driven two-segment
interpolating clothoid spline decoder is designed as

D(γ | (x, y, ϕ, κ)0, (x, y, ϕ)2) = (l02, ϕ1) (11)

where l02 = l1 + l2 is the total arc length. Using the
decoder output, the parameters l1, l2, κ1, κ2 can be computed
analytically as l1 = γl02, l2 = (1 − γ)l02, κ1 = ϕ1−ϕ0

l1
,

7037



0 0.5 1

-0.5

0

0.5
n
o
rm

a
li
ze

d
sp

li
n
e

. = 0:1

0 10 20

-10

0

10

ev
al

u
a
ti
on

0 0.5 1

-0.5

0

0.5

. = 0:3

0 10 20

-10

0

10

0 0.5 1

-0.5

0

0.5

. = 0:5

0 10 20

-10

0

10

0 0.5 1

-0.5

0

0.5

. = 0:7

0 10 20

-10

0

10

0 0.5 1

-0.5

0

0.5

. = 0:9

0 10 20

-10

0

10

0

0.05

0.1

0.15

0.2

Fig. 4. Top. Normalized two-segment clothoid splines and their reflections with varying latent variable γ ∈ (0, 1). The light blue curve is the first
segment, and the light orange curve is the second segment of the spline. Bottom. Evaluation of the interpolating clothoid spline decoder. Two-segment
clothoid splines are generated by the decoder using the latent variable γ and endpoint constraints. The evaluation error is depicted using a color map, with
points exceeding an error of 0.2m indicated in red.

and κ2 = ϕ2−ϕ1

l2
. However, the decoder D still requires

high dimensional input data including γ, (x, y, ϕ, κ)0, and
(x, y, ϕ)2. To reduce the complexity, we leverage the prop-
erty that the shape of the curve remains invariant under
translation, rotation, scale, and reflection transformations. To
utilize the curve shape invariance, the normalized spline is
defined by (x0, y0) = (0, 0) and (x2, y2) = (1, 0) with the
following rotation and scale transformations:

ϕ⋆ ≡ ϕ⋆ − ϕ02 (mod 2π), κ⋆ = κ⋆d02, l⋆ =
l⋆
d02

(12)

where ⋆ ∈ {0, 1, 2} is the vertex index of the clothoid spline,
ϕ02 := arctan(y2 − y0, x2 − x0) is the relative heading, and
d02 :=

√
(y2 − y0)2 + (x2 − x0)2 is the endpoint distance.

The reflection over the x-axis further reduces the domain of
the normalized spline by (ϕ⋆, κ⋆) 7→ −(ϕ⋆, κ⋆). Since the
endpoint positions of the normalized splines are fixed, the
decoder can be redefined as

D(γ | κ0, ϕ0, ϕ2) = (l02, ϕ1) (13)

where D is the decoder for the normalized splines. From the
decoder output (l02, ϕ1), the original clothoid spline can be
reconstructed using the inverse of (12).

From the decoder (13), the tree expanding problem (5) can
be approximated as

minimize
v0∈Vprev,γ∈(0,1)

Jexpand(vN , Eroot→N ) + JD(vN )

subject to |κi| ≤ κmax

dist(Oego(Enew),Oobs) ≥ ϵ

(14)

which selects the parent vertex v0 ∈ Vprev and optimizes the
arc length ratio γ ∈ (0, 1). The decoder cost JD : V → R
is to evaluate the decoder model D, because it may contain
some error. The relaxation using the decoder can be extended
to N > 2, but N = 2 suffices for our problem formulation.
If the target curvature constraint κN = κtarget is used in the
tree expanding problem, N = 3 is required, and the latent
variable becomes two-dimensional.

Numerical Examples

Normalized two-segment clothoid splines can be generated
by optimizing l02, ϕ1 subject to given γ, κ0, ϕ0, and ϕ2.
CasADi and IPOPT are employed here, while the optimiza-
tion benefits by the proposed clothoid approximation (7),
which offers small endpoint error with reasonable complex-
ity. The data is gathered across a four-dimensional grid
with γ = 0.1, 0.2, . . . , 0.9, ϕ0 = 0, 0.1π, . . . , 0.5π, κ0 =
−2π,−1.9π, . . . , 2π, and ϕ2 = −0.5π,−0.4π, . . . , 0.5π
which has 24 354 data points in total. The reflection transfor-
mation reduces the data and the decoder domain to ϕ0 ≥ 0.
See Fig. 4 for the example of the normalized clothoid splines
and their reflections.

The input space of the decoder has been notably reduced
by the spline normalization (12) and reflection, making it
feasible to employ a linear interpolation of the grid data. Al-
ternative methods, including regressions, Gaussian processes,
and neural networks, remain available for future explorations.
The performance of the interpolation-based decoder (13) is
evaluated in Fig. 4. The decoder demonstrates an average
error of 0.0048±0.0056m over a one-meter path. Evaluations
with a high arc length ratio γ tend to exhibit large errors
(e.g., around 0.28m over a 24.6m path). It occurs because
the high γ causes many endpoint constraints infeasible for
two-segment clothoid splines, leading to limited available
data. Moreover, longer clothoid splines amplify evaluation
errors since the decoder is trained with normalized splines.
To address the decoder error, the tree expansion problem (14)
accounts for the decoder model cost, effectively preventing
the selection of decoded splines with substantial errors.

On the other hand, using an inaccurate decoder, such as
one with coarse grid data, can lead to increased deviations
in the target node constraints. Then, the resulting tree may
exhibit undesirable behaviors, including lane violations, and
may not adequately explore the target configurations for
effective path planning. Therefore, it is crucial to reduce the
decoder error by employing a sufficient amount of data.
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Fig. 5. Snapshots of the driving simulation. The proposed method selects the best path while considering the maximum curvature and the collision
avoidance. The safety margin of the selected path is visualized by the capsules. The simulation video is provided at https://youtu.be/g2UBF7bnQ74

V. SIMULATION RESULTS

The proposed framework is validated using MATLAB
on a Windows 10 machine with AMD Ryzen 5 3600X
CPU and 16GB RAM. The driving scenario is generated
by MATLAB Automated Driving Toolbox with static ob-
stacles. The proposed algorithm is tested on various roads
approximately 800 to 900m long and 18m width with 5
lanes. The ego vehicle maintains a constant speed 5m/s, and
the maximum curvature of the ego vehicle is 0.3m−1. For
the tree expansion, the 20 target configurations are drawn
from the Frenét frame of the road, leading the clothoid tree
to have maximum 41 vertices. The relaxed MIP is solved in
a grid-based manner, i.e., all possible combinations of the
tail vertices and the latent variables γ = 0.3, 0.4, . . . , 0.7
are tested. Capsules with a safety margin are employed
for collision checks. The planning frequency is 10Hz. The
planning algorithm has the potential for extensions to address
dynamic obstacles, higher ego speeds, or the adaptation of
driving strategies based on traffic conditions. However, these
extensions lie beyond the focus of the paper.

As demonstrated in Fig. 5, our clothoid tree-based path
planning successfully finds the path with G2 continuity
and feasibility constraints. The tree shape varies by the
road curvature and obstacles while incorporating the multi-
modality of the driving scenarios. The resultant planning
time without collision checks is 0.0179 ± 0.0018s, and the
planning time with collision checks is 0.0535 ± 0.0214s.
Note that the computational complexity of the algorithm
solely depends on the number of target configurations and
obstacles, not vehicle speed or road shape. Some prior works
may find the feasible path faster, but they lack the ability
to generate path candidates of varying shapes with proper
geometric interpretations.

The cost functions are described below. The vertex cost is
defined as Jvert(v) =

kvert,κ

2 (gκ(v)−κtarget)
2 with kvert,κ =

1 which tries to match the target curvature during the tree

expansion. The target curvature κtarget is obtained from the
road shape. The position and heading error are not considered
due to the target constraint in (5). The edge cost is defined
as Jedge(e) =

∫ gl(e)

0

(kedge,κ

2 κ2(s) +
kedge,σ

2 σ2(s)
)
ds with

kedge,κ = 1 and kedge,σ = 5 where κ, σ : R≥0 → R are the
curvature and sharpness along the edge. The edge cost makes
the curvature of each branch more uniform. The decoder
evaluation cost is defined as JD(v) = kD

2 ∥g(x,y)(v) −
(x, y)target∥2 with kD = 0.1 which regulates the decoder
model error. The decoder cost also does not consider heading
error since ϕN = ϕtarget is ensured by D.

VI. CONCLUSION

In this paper, we propose a clothoid tree-based path plan-
ning for self-driving robots. The clothoid tree is a directed
rooted tree, where each edge exhibits a linear curvature,
and adjacent edges maintain G2 continuity. The clothoid tree
is employed efficiently with the following two techniques:
1) the efficient and accurate clothoid approximation method
that ensures a smooth curve representation; and 2) the data-
efficient decoder that generates two-segment interpolating
clothoid splines, improving the tree generation time. The
clothoid approximation achieves an error of machine epsilon
over a one-meter arc length. The interpolating clothoid spline
decoder exhibits millimeter-level error over a one-meter
path. In the driving simulations, the tree shape varies by
the road curvature and obstacles, and the planning time
remains ≤0.1s even with collision checks using capsules.
Our approach contributes to curve approximation and path
optimization methods, offering enhanced path planning and
design possibilities for self-driving robots. Some possible
future research directions are: considering dynamic obstacles
and speed change of the ego vehicle; expanding the clothoid
tree to different terrains and environmental conditions; in-
corporating the dynamics-based feasibility checks [20]; and
real hardware experiments.
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