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Abstract— In this paper, we present a new multibody physics
simulation framework that utilizes the subsystem-based struc-
ture and the Alternating Direction Method of Multiplier
(ADMM). The major challenge in simulating complex high
degree of freedom systems is a large number of coupled con-
straints and large-sized matrices. To address this challenge, we
first split the multibody into several subsystems and reformulate
the dynamics equation into a subsystem perspective based on
the structure of their interconnection. Then we utilize ADMM
with our novel subsystem-based variable splitting scheme to
solve the equation, which allows parallelizable and modular
architecture. The resulting algorithm is fast, scalable, versatile,
and converges well while maintaining solution consistency. Sev-
eral illustrative examples are implemented with performance
evaluation results showing advantages over other state-of-the-
art algorithms.

I. INTRODUCTION

Physics simulation enables synthetic data acquisition in
a virtual environment to reduce the cost, time, and risk
of data-driven methods that are increasingly emerging in
robotics [1]–[4]. Further, in terms of finding a solution to
the modeled system dynamics equation, it can be directly
utilized in various problems such as trajectory optimization
[5], system identification [6], etc. As such, the importance of
simulation is increasingly being emphasized, with a plethora
of open-source software [7]–[11].

One of the most important concerns in robotic simulation
research is how to obtain data that is accurate and efficient
in terms of computation time. This is a challenging problem
and implies the question of how to formulate the dynamics
of systems, and which algorithms to use to solve them.
Since it includes many factors such as discrete-time integra-
tion, various types of constraints, friction, system-induced
sparsity, numerical algorithms, etc., various methods have
been proposed for decades. However, simulation of a high
degree of freedom (DOF) system with many constraints is
still a difficult problem [12]. This is because, fundamentally,
all system DOFs are dynamically coupled, so a constraint
force acting on a part of the system in general affects the
entire system. This leads many algorithms to use large-size
matrix operations (e.g., factorization) or possibly excessive
numerical iterations.
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In this paper, we attempt to solve this challenge by
developing a novel subsystem-based simulation approach,
that is simple, modular, and suitable for parallelization while
ensuring the solution consistency and accuracy. For this,
we first split the multibody system into several subsystems
and reformulate the conventional expressions of discrete-time
constrained dynamics into a subsystem perspective. Then
inspired by the structure of the Alternating Direction Method
of Multiplier (ADMM [13]), we present a novel variable
splitting scheme and solution process on the reformulated
dynamics equation. This then reduces the solution process
to iterations of 1) block-decomposed linear solving of the
subsystem dynamics equation (allowing for complete par-
allelization) and 2) parallel resolution of all the constraint
interfaces (with scalar operation only), ensuring low per-
iteration computation time and scalability. Moreover, our
method can handle with various types of constraints and also
exhibits stable convergence properties, rendering itself as an
appealing alternative for robot simulation. Several multibody
simulation examples are then implemented and demonstrated
to show the validity of our framework.

The conventional approach to dealing with constrained
dynamics equations is applying pivoting algorithms [14]
after formulating a linear complementarity problem [15].
However, since these direct methods require high computa-
tional complexity and polygonal friction cone approximation,
iteration-based methods have been more widely used in
recent studies. One of the popular approaches is using
Gauss-Seidel type iteration per constraint [16]–[19]. These
methods scale well for particle-based systems, but not well
for systems with generalized coordinate representation (e.g.,
robot joint angles) and complex internal constraints (e.g.,
finite element). Several researches tackle this issue [20]–
[22] by taking an operator splitting type method. However,
their applicability to rigid-deformable objects with various
constraint types is limited and they still have to deal with
the full system size matrices. Another direction is to apply a
Newton-type iteration over the cost including the constraint
[23]–[25]. Despite their good convergence property, their
second-order nature could be problematic for large-sized
problems as they require multiple linear problem resolutions.

Our subsystem-based ADMM algorithm may be regarded
as an opportunistic compromise between the two directions
described above. By properly separating primal-dual rela-
tionships based on subsystems, we circumvent the burdens
of handling both with many constraints and large-sized
matrices. In this context, [26]–[28] share some conceptual
similarities with our framework proposed here. However,
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their applicability is much limited as compared to our frame-
work, since 1) they need factorization to construct coupling
interface equation, which is costly especially as the size
of the subsystems grows, and 2) their constructed coupling
dynamics is dense, therefore only a small number of inter-
connection between subsystems is permitted for reasonable
performance. In contrast, by utilizing the structural peculiar-
ity of ADMM, our proposed framework can handle all the
constraints in a decoupled manner for each iteration phase,
thereby not only substantially improving the algorithmic ef-
ficiency but also allowing for its extension to a wide range of
multibody systems. We also note that [21], [29], [30] employ
ADMM structure in simulation. However, their full system
level approaches still require large-sized matrix operations.
In contrast, our subsystem-based variable splitting gives a
rise to small-sized and parallelized structures, making our
scheme much more efficient and scalable.

The rest of the paper is organized as follows. Some
background materials about constrained dynamics simulation
and ADMM will be explained in Sec. II. Then our simulation
framework using subsystem-based ADMM will be described
in Sec. III. Some illustrative examples and performance
evaluation will be presented in Sec. IV. Finally, discussions
and concluding remarks are given in V.

II. PRELIMINARY

A. Constrained Dynamics

Consider following continuous-time dynamics:

M(q)q̈ + C(q, q̇)q̇ + dψT = f + J(q)Tλ (1)

where q ∈ Rn is the generalized coordinate variable of
system, M(q), C(q, q̇) ∈ Rn×n are the mass, Coriolis matrix,
dψT ∈ Rn is the potential action, f ∈ Rn is the external
force, and λ ∈ Rnc , J(q) ∈ Rnc×n are the constraint
impulse and Jacobian with n, nc being the system/constraint
dimension. The discretized version of the dynamics is

Mk
vk+1 − vk

tk
+ Ckvk + dψT

k = fk + JT
k λk

v̂k =
vk + vk+1

2
, qk+1 ← update(qk, v̂k, tk)

(2)

where k denotes the time step index, Mk = M(qk), Ck =
C(qk, vk), tk is the step size, and vk, v̂k ∈ Rn are the current,
representative velocity [31] of each time step. Although we
use the midpoint rule here, it can be transformed into other
integration rules. From now on, time step index k will be
omitted for simplicity but note that all components are still
time(step)-varying.

In this paper, we deal with the constraints at the velocity
level as in many other works [7]–[9], which is stable but is
based on linearization. Issues that may arise from lineariza-
tion can be suppressed by adopting multiple-linearization as
in [21] or re-linearization [32], and these will be integrated
into our future implementation. We classify the system
constraints into three categories: soft, hard, and contact
constraints:

1) Soft constraint: Soft constraints are originated from the
elastic potential energy of the system (e.g., finite element).
If the j-th constraint is soft, impulse can be written as

λj = −kj(ej + αjJj v̂) (3)

where ej ∈ R and Jj ∈ R1×n are the (t-scaled) error and
Jacobian for soft constraint, kj is the gain parameter, and
αj > 0 is the variable that includes an implicit term with
constraint-space damping. The value of αj is associated with
system energy behavior, see [31], [33] for more details.

2) Hard constraint: Hard constraints ensure that equa-
tions and inequalities for the system are strictly satisfied (e.g.,
joint limit), including holonomic and non-holonomic types.
If the j-th constraint is hard, it has the form of

Jj v̂ + ej ≥ 0 (4)

where ej ∈ R and Jj ∈ R1×n denote the error and Jacobian
for hard constraint. Here, the error can be determined by
methods such as Baumgarte stabilization [34].

3) Contact constraint: Contact condition is typically the
most demanding type since it includes non-linear comple-
mentarity relation between primal (i.e., velocity) and dual
(i.e., impulse) variables. We take Signorini-Coulomb condi-
tion [35], which is the most universal expression for frictional
contact. If the j-th constraint is contact, the relation is

0 ≤ λj,n ⊥ Jj,nv̂ + ej,n ≥ 0

0 ≤ δj ⊥ µjλj,n − ∥λj,t∥ ≥ 0

δjλj,t + µjλj,nJj,tv̂ = 0

(5)

where ⊥ denotes complementarity, ej,n ∈ R and Jj,n ∈
R1×n denote the error and Jacobian for contact normal,
Jj,t ∈ R2×n is the Jacobian for contact tangential, and µj is
the friction coefficient and δj is the auxiliary variable. There
are three situations induced by the condition - open (λj,n =
0), stick (λj,n > 0, δj = 0), and slip (λj,n > 0, δj > 0).

B. Alternating Direction Method of Multiplier
Alternating direction method of multiplier (ADMM [13])

is the method to solve the following optimization problem:

min
x,z

f(x) + g(z) s.t. Px+Qz = r

Based on the augmented Lagrangian defined as,

L = f(x) + g(z) + uT (Px+Qz − r) + β

2
∥Px+Qz − r∥2

where u is the Lagrange multiplier and β > 0 is the penalty
weight. ADMM iteratively performs alternating minimiza-
tion of L with respect to each variable. The iteration process
of ADMM can be summarized as follow:

xl+1 = argmin
x

(
f(x) +

β

2
∥Px+Qzl − r + 1

β
ul∥2

)
zl+1 = argmin

z

(
g(z) +

β

2
∥Pxl+1 +Qz − r + 1

β
ul∥2

)
ul+1 = ul + β(Pxl+1 +Qzl+1 − r)

where l is the loop index. ADMM is known as robust, simple
to implement, and able to attain independent resolution with
respect to each variable [13], [36].
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(a) Granular objects stirring (b) Cable mobile manipulation

(c) Deformable body insertion
Fig. 1: Motivating examples and implementations of our subsystem-
based ADMM framework.

III. SIMULATION VIA SUBSYSTEM-BASED ADMM

A. Subsystem Division

Our approach starts by dividing the entire system into
several subsystems. See Fig. 1 for our motivational examples.
We assume that objects in typical robotics simulation can
be broadly classified into three main classes: rigid body,
deformable body, and robot manipulator. In many cases, each
rigid body and manipulator is treated as a single subsystem
(as in Fig. 1a). This is intuitive and allows for preserving
modularity for each class (e.g., constant 6 DOF inertia for
a rigid body, articulated structure of manipulator). However,
for the situations in which a large number of rigid bodies
are connected through soft coupling (e.g., cable modeling
as in Fig. 1b), we find that defining a new subsystem
by assembling several rigid body instances can give better
performance. In the case of a deformable body, its dimension
is often so high to conveniently treat it as a single subsystem
and causes an imbalance with other objects. Thus, we split
each deformable object into several pieces and consider each
as a subsystem, while they are jointly connected using hard
constraints (as in Fig. 1c).

B. Subsystem-Based Dynamics Reformulation

Now consider that the whole system is divided as de-
scribed in Sec. III-A. If all the subsystems are completely
independent (i.e., no coupling), we can formulate each sub-
system dynamics using the structure of (2) and write in the
following compressed form:

Aiv̂i = bi + JT
in,iλin,i (6)

for i = {1, · · · , N} where N is the number of subsystem,
Ai ∈ Rni×ni , bi ∈ Rni are the subsystem dynamics ma-
trices/vectors, and λin,i ∈ Rnin,i , Jin,i ∈ Rnin,i×ni are the
intra-subsystem constraint impulse/Jacobian while ni, nin,i
are the dimension of subsystem/intra-subsystem constraint.
Here, each Ai is a symmetric positive definite from the mass
matrix and energy Hessian approximation [21], [23], [35].

Remark 1: Since (3) is in closed-form of v̂, it can be
directly included in Ai, bi, or still be remained in λin,i of
(6). Currently, this is optional, as both these schemes work
fine in our framework.

Now to take into account the coupling constraints between
the subsystems, we must add a coupling impulse and the
dynamics of the entire system can be written asA1

. . .
AN


 v̂1...
v̂N

 =

 b1...
bN

+
 J

T
in,1λin,1

...
JT
in,Nλin,N

+JT
cpλcp

(7)
where λcp ∈ Rncp and Jcp ∈ Rncp×n are the inter-subsystem
coupling impulse and Jacobian. Then (7) can be rewritten as

Av̂ = b+ JT
inλin + JT

cpλcp (8)

Note that this new subsystem-based dynamics formulation
(8) does not relax any physical condition, while still allowing
to utilize the block-diagonal structure of A, even for complex
multibody scenarios.

C. ADMM-Based Solver
To solve (8) using ADMM, we start by defining the

following function:

fi(v̂i, xi) =
1

2
v̂Ti Aiv̂i − bTi v̂i + I(Jc,iv̂i = xi) (9)

where xi ∈ Rnc,i is the auxiliary variable, I is the indicator
function, and Jc,i ∈ Rnc,i×ni is the row stack of Jin,i
and Jcp,i while nc,i is the summation of intra- and inter-
subsystem constraint dimension. The function (9) is defined
independently for each subsystem and includes the cost for
the dynamics (Ai, bi) and the mapping into the constraint
space (Jiv̂i = xi), but does not yet concern with constraint
satisfaction. For the constraint satisfaction, we define the
following function:

g(z) = g(z1, z2, · · · , zns
) =

nin+ncp∑
j=1

gj (10)

where each zi ∈ Rnc,i is actually interpreted as a duplicated
variable of xi for the g function to enforce the constraints.
The function g can be better understood in constraint-wise,
i.e., summation of gj where j index denotes each constraint.
Each gj is a function of only the variables corresponding to
the j-th constraint i.e.,

{zi,j | i ∈ Sj}

where zi,j is the segment of zi corresponds to the j-th
constraint and Sj is the set of subsystem indexes related
to the j-th constraint. For the intra-subsystem constraint, the
cardinality of Sj (i.e., |Sj |) is 1; if the constraint is inter-
subsystem coupling, then |Sj | ≥ 2. Based on the functions
(9) and (10) defined above, solving (8) can be reformulated
as the following optimization problem:

min
v̂,x,z

ns∑
i=1

fi(v̂i, xi) + g(z)

s.t. x = z

(11)

10134

Authorized licensed use limited to: Seoul National University. Downloaded on October 05,2023 at 04:10:41 UTC from IEEE Xplore.  Restrictions apply. 



Now applying ADMM iteration on (11), we can obtain the
following iteration sequence:

v̂l+1
i , xl+1

i = argmin
v̂i,xi

(
fi +

βi
2
∥xi − zli +

1

βi
uli∥2

)
(12)

zl+1 = argmin
z

(
g +

∑
i

βi
2
∥xl+1

i − zi +
1

βi
uli∥2

)
(13)

ul+1
i = uli + βi(x

l+1
i − zl+1

i ) (14)

where (12) and (14) are actually computed ∀i in parallel and
the weight parameter βi ∈ R is utilized for each subsystem
for better numerical conditions (see also Sec. III-D.2). Note
that the fixed-point of above iteration will satisfy ∀i Jc,iv̂i =
xi = zi, therefore it will exactly satisfy (8) and all constraints
(i.e., (3), (4), (5) ∀j) without any relaxation. Since Lagrange
multiplier update (14) is a trivial step, the main consideration
here is how to solve (12) and (13) in an efficient manner.

1) Solving (12): By using an auxiliary variable xi, it can
be seen that the dimension of the problem (12) is expanded
to dim(v̂i)+dim(xi) from the original subsystem dimension
dim(v̂i). Consider the following KKT conditions of (12):

Aiv̂
l+1
i = bi + JT

c,iγ

βix
l+1
i = βiz

l
i − uli − γ

Jc,iv̂
l+1
i = xl+1

i

where γ is the Lagrange multiplier. Here, combining these
three equations, we can obtain v̂i by solving the following
linear equation:

(Ai + βiJ
T
c,iJc,i)v̂

l+1
i = bi + JT

c,i(βiz
l
i − uli) (15)

where the equation is always solvable from the positive
definite property of the left-most matrix. By this procedure,
the problem size can be brought back to dim(v̂i), therefore
the concern about increased computation time due to the
inclusion of xi can be obliviated. Note that this trick is not
possible if we attempt to directly solve the minimization of
non-smooth function fi. This rather becomes possible as (12)
in ADMM procedure uses the quadratic augmented term with
scalar weight. In conclusion, the process for solving (12) is
simply obtaining a subsystem size linear solution for each
subsystem in parallel.

2) Solving (13): As described earlier, g is the summation
of all the gj defined for each constraint. Accordingly, the
problem (13) can be independently decomposed according
to all the constraints as

min
zi,j
i∈Sj

gj + ∑
i∈Sj

βi
2
∥xl+1

i,j − zi,j +
1

βi
uli,j∥2

 (16)

therefore can be solved ∀j in parallel. Now consider solving
(16) for bilateral case (i.e., |Sj | = 2), which is one of the
most frequently appearing in practice. For simplicity, let us
assume Sj = {1, 2}.

Hard constraint: As zi is the value already mapped into
constraint space, gj only needs to enforce the constraint on

z1,j + z2,j . So in the case of hard constraint,

gj = I(z1,j + z2,j + ej ≥ 0) (17)

and (17) can be interpreted as constraint impulse λj acting
on the linear solution of the quadratic terms in (16) i.e.,

β1z1,j = β1x
l+1
1,j + ul1,j︸ ︷︷ ︸
:=yl+1

1,j

+λj

β2z2,j = β2x
l+1
2,j + ul2,j︸ ︷︷ ︸
:=yl+1

2,j

+λj
(18)

where we introduce the new variable y for conciseness. We
can see from the structure of (16) that the relation (18) is
matrix-free, and only consists of scalar weights. Thanks to
this property, λj can be computed in a very simple manner
as we combine (18) with the following complementarity
condition:

0 ≤ λj ⊥ z1,j + z2,j + ej ≥ 0 (19)

the solution for λj can be obtained with the simple scalar
operation:

λj = Π≥0

(
−
β−1
1 yl+1

1,j + β−1
2 yl+1

2,j + ej

β−1
1 + β−1

2

)
where Π≥0 denotes the projection on positive set.

The matrix-free relation (18) is the same for other types
of constraints (soft, contact), while (19) to be replaced with
other relation.

Soft constraint: From the structure of (3),

λj = −kj(ej + αj(z1,j + z2,j)) (20)

has to be satisfied. Then by substituting (18) to (20), we can
obtain the impulse solution as

λj = −
kj(ej + αj(β

−1
1 yl+1

1,j + β−1
2 yl+1

2,j )

(1 + (β−1
1 + β−1

2 )αjkj)

which is also very simple to compute.
Contact constraint: Here the relation between z1,j + z2,j

and λj must follow (5), therefore

0 ≤ λj,n ⊥ z1,j,n + z2,j,n + ej,n ≥ 0

0 ≤ δj ⊥ µλj,n − ∥λj,t∥ ≥ 0

δλj,t + µλj,n(z1,j,t + z2,j,t) = 0

(21)

Despite the complexity of (21), solution can be easily ob-
tained from the simple scalar structure of (18):

λj = ΠC

(
−
β−1
1 yl+1

1,j + β−1
2 yl+1

2,j + ej

β−1
1 + β−1

2

)
where ΠC denotes the projection on the friction cone. The
process can be done through a few algebraic operations,
while respecting all contact conditions [35].

Although we explain the process only for the bilateral
case, it can be shown straightforwardly that such a simple
solution form can be derived for other cases as well.
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Algorithm 1 Simulation via Subsystem-Based ADMM

1: Subsystem division for given multibody (Sec. III-A)
2: while simulation do
3: ∀i construct Ai, bi in parallel
4: ∀j construct ej , Jj in parallel
5: ∀i factorize Ai + βiJ

T
c,iJc,i in parallel

6: while loop do
7: ∀i update v̂l+1

i from (15) in parallel
8: compute residual θ from (22)
9: if θ < θth or l = lmax then

10: break
11: end if
12: ∀j update zl+1

j from (16) in parallel
13: ∀i update ul+1 from (14) in parallel
14: l← l + 1
15: end while
16: update each subsystem state using v̂l+1

i

17: end while

D. Convergence

It can be easily verified that each fi and gj for hard and
soft constraints is convex in our formulation (11). For contact
conditions, gj may not be convex, but can be convexified by
adopting the relaxed convex model [16]. In such cases, our
method can guarantee convergence [13]. Although we have
not encountered the convergence issue associated with non-
convexity of (5), a more thorough analysis will be left for
future work.

1) Residual: Originally, our process (12), (13), (14) is the
iteration of (v̂, x, z, u) and both primal and dual residual [13]
are required to check the condition to terminate the iteration.
Instead, for our framework, we use the variable y in (18) to
define the residual as

θ =

ns∑
i=1

∥yl+1
i − yli∥2 (22)

where θ is the residual value. This means that the itera-
tion can be reinterpreted in terms of the lower-dimensional
variable y, and the process of calculating the residuals can
be more concise. The following proposition provides the
rationale of the statement:

Proposition 1: (v̂l+1, xl+1, zl+1, ul+1) is the fixed-point
of the iteration (12), (13) and (14), if and only if θ = 0.

Proof: (⇒) This is trivial. (⇐) As θ = 0 denotes
∀yl+1

i = yli, we can find that zl+1 = zl holds as ∀λj are
uniquely determined from y. Then as (14) is equivalent to
ul+1
i = yl+1

i − zl+1
i , ul+1 = ul also holds. Finally, v̂ is

determined from z and u (15), so we can conclude that the
set value is in fixed-point of the iteration.

2) Choice of β: We find that iteration has stable con-
vergence regardless of β, but the value of β affects the
convergence rate. We empirically confirm that the following
β setting exhibits good performance:

∀βi =
Tr (Ai)

Tr
(
JT
c,iJc,i

) (23)

which suggests a balanced weight between dynamics-related
term Ai and constraint-related term JT

c,iJc,i. A more in-depth
theoretical analysis of the strategy will be discussed in future
work.

E. Summary

Our physics simulation framework via subsystem-based
ADMM is summarized in Alg. 1. As described earlier, the
major part of the procedure is subsystem-wise parallel solving
of (15) (line 7) and constraint-wise parallel solving of (16)
(line 12). From these characteristics, the computational com-
plexity of our algorithm is at least linear: O(ns+nin+ncp).
If parallelization is taken into account, it will be lower.

IV. EXAMPLES AND EVALUATIONS

We use an Intel Core i7-8565 CPU 1.80GHz (Quad-
Core), OpenGL as a rendering tool, C++ Eigen as a matrix
computation library, and C++ OpenMP as a parallelization
library in our implementation. Time step is set to 10 ms for
all examples. See also our supplemental video.

A. Scenarios

We implement three high-DOF multibody manipulation
scenarios. In general, they consist of a combination of high-
gain controlled robotic arms and lightweight objects with
multi-type constraints, resulting in numerically challenging
situations. We employ Franka Emika panda [37] as a robot
arm and Husky [38] as a ground vehicle.

1) Granular object stirring: The example is illustrated in
Fig. 1a: the robot arm uses an end effector to stir the granular
material contained in the box. The granular material consists
of a total of 216 spheres with a radius of 1 cm and a weight
of 4 g. The total system dimension is 1303, and since each
rigid body and robot is treated as a subsystem, there are a
total of 217 subsystems.

2) Collaborative cable manipulation: The example is
illustrated in Fig. 1b: two mobile manipulator consist of a
ground vehicle and a robot arm are transporting and winding
a flexible cable. Cable is modeled by 640 rigid bodies and
soft constraint from Cosserat model, with length 1.2 m,
diameter 8 mm, Young modulus 0.1 MPa, and Poisson ratio
0.49. Each mobile manipulator is modeled as 10-DOF system
while its movement constrained by non-holonomic constraint
(no-slip). Total system dimension is 3840, and we treat each
mobile manipulator and 4 cable segments as a subsystem,
making a total of 162 subsystems.

3) FEM beam insertion: The example is illustrated in
Fig. 1c: the robot arm inserts the deformable beam modeled
with co-rotational FEM through narrow gap. The size of
beam is 0.05 × 0.05 × 0.5 m, with a Young modulus
10 MPa and a Poisson ratio 0.45. The FEM model consists
of 1591 nodes and 6347 tetrahedral elements, therefore total
dimension is 4780. We divide the model into 20 subsystems
so the entire system consists of a total of 21 subsystems
including the manipulator.
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Solver PGS PJ FADMM NNewton SubADMM
Iteration 30 60 90 30 60 90 30 60 90 3 6 9 30 60 90

Stir
AT 14.50 23.91 32.27 3.235 5.688 9.425 28.41 41.40 56.95 24.35 46.99 75.44 3.489 5.940 8.705

AA 4.427 4.928 5.248 3.033 3.349 3.562 4.107 4.644 5.009 3.565 4.429 5.324 4.069 4.579 5.023

Cable
AT 48.08 59.30 72.96 - - - 16.74 23.52 32.96 43.35 87.98 132.7 2.288 4.285 6.402

AA 4.141 4.860 5.404 - - - 4.189 4.634 4.910 3.270 4.454 5.278 4.344 4.984 5.222

Beam
AT 231.4 241.2 251.2 - - - 50.33 92.11 130.3 188.5 360.2 525.7 13.41 24.67 35.50

AA 3.895 4.194 4.255 - - - 4.220 4.478 4.756 2.445 3.494 4.945 4.326 4.743 4.925

TABLE I: Evaluation results for various solvers. AT: average compuatation time (ms), AA: average accuracy (constraint error value
converted using − log(·) before averaged, therefore bigger is better). Unmarked values (-) means that the simulation fails to run successfully
(e.g., significant penetration).

B. Baselines

We implement the following algorithms for performance
comparison, with our method being denoted as SubADMM.

1) Projected Gauss-Seidel (PGS): PGS is a representative
algorithm in robotics and graphics fields [16]–[19] and soft-
ware [8]–[10]. We implement an algorithm with conjugate
gradient-based acceleration to improve its performance.

2) Projected Jacobi (PJ): PJ is similar to PGS, but they
do not solve constraints sequentially, but rather solve and
update them in parallel at once.

3) Full ADMM (FADMM): State-of-the-art implementa-
tions of ADMM algorithms [39] can be used to solve physics
simulation, which is specified in [29]. The main difference
with our algorithm is that they require solving of the full-
system size matrix for each iteration.

4) Nonsmooth Newton (NNewton): We also implement a
recently proposed algorithm that transform the constraints
into non-smooth function and solve it using Newton iteration.
We refer [23], [40] for details.

C. Performance Index

We apply the same number of iteration (30, 60, 90) for
all algorithms except NNewton and measure the average
solver computation time and constraint error norm from
the simulation results. In the case of NNewton, considering
its second-order nature (cost per iteration is high but uses
fewer iterations), the number of iterations is reduced by 1/10
(i.e., 3, 6, 9). Constraint error for contact is calculated using
Fischer-Burmeister function [23].

D. Results

Evaluation results are summarized in Table I. For graunlar
object strring scenario, PJ and SubADMM shows the fastest
computation speed, and this is due to their structure suitable
for parallelization. However, constraint error of PJ is sig-
nifcantly higher than SubADMM. This reflects the unstable
and slow convergence of the Jacobi-style iteration. On the
other hand, SubADMM shows comparable error with other
methods and shows its validity in terms of accuracy. In
the case of the cable and beam scenario, the computation
performance of PGS and PJ becomes lower as the Delassus
operator assembly is more complicated. As such, FADMM
outperforms them, yet SubADMM is still the fastest. This is
due to our special structure, which, as mentioned earlier, only
requires parallelized resolution of the subsystem matrices

(a) Stir (b) Stir
Fig. 2: Scalablity test results of SubADMM.

without dealing with large-sized matrices. In the similar vein,
SubADMM also has an efficiency advantage over NNewton.
Algorithms other than PJ showed valid accuracies, while
PJ failed to generate an adequate simulation results. In
summary, the results demonstrate all of the methodologically
described advantages of SubADMM: 1) it avoids burdens on
both many constraints and large-sized matrices, and 2) it does
not use certain approximations on the model and has a good
convergence property.

E. Scalability
To precisely evaluate the scalability of our method, we

measure the computation time (iteration: 60) by increasing
the number of spheres in the stir scenario and the number
of segments in the cable scenario. Fig. 2 shows linear com-
plexity of SubADMM (R-squared value: 0.9993, 0.9998).

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we present a new physics simulation frame-
work based on subsystem-based ADMM. Our approaches
combines a novel subsystem-based formulation (7) and op-
erator splitting (9) and (10), thereby achieve parallelizable
and modular architecture for general multibody dynamics.
Several examples are implemented and evaluations show
the advantages of our framework against state-of-the-art
algorithms. We believe that a generic implementation (similar
to the open source form) will make a good contribution
to the robotics community. We also believe that our work
can be extended to the area of optimal control by exploiting
the coupled structure of the large-size optimization problem
(e.g., time correlation). Finally, similar to typical ADMM,
the convergence property of our algorithm is stable but still
linear. Therefore, combination with second-order accelera-
tion schemes will be a promising research direction.
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