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Narrow Passage Path Planning via
Homotopy-Preserving Collision Constraint

Interpolation
Minji Lee, Jeongmin Lee and Dongjun Lee†

Abstract—Narrow passage path planning is a prevalent prob-
lem from industrial to household sites, often facing difficulties
in finding feasible paths or requiring excessive computational
resources. We propose a Homotopy Optimization Method (HOM)
tailored for the narrow passage problem, utilizing a novel collision
constraint interpolation method using signed distance functions
(SDF). The framework begins by decomposing the environment
into convex objects and representing it as a simplicial complex
based on their connectivity. This representation enables topo-
logical analysis to induce a easy-to-hard sequence of collision
constraint interpolation that preserves homotopy equivalence.
Using this collision constraint interpolation, the optimization
proceeds through a series of subproblems, gradually guiding
the path to the final solution. Several examples are presented
to demonstrate how the proposed framework addresses narrow
passage path planning problems.

Index Terms—Motion and path planning, manipulation plan-
ning, nonholonomic motion planning.

I. INTRODUCTION

PAth planning is a fundamental and crucial aspect of
robotic tasks. Despite its long-standing significance, path

planning in narrow passage remains particularly challenging
with active researches continuing even to this day [1], [2],
[3]. Such environments are not merely common in industrial
settings, but are often encountered in everyday scenarios, such
as tight assembly tasks or navigating cluttered spaces.

Historically, most path planning techniques have leaned on
sampling-based methods such as rapidly-exploring random
tree (RRT) [4] or probabilistic roadmap (PRM) [5]. These
methods offer significant advantages, including probabilistical
completeness [6], and a straightforward problem formulation,
which generally requires only the computation of path length
and collision checks. Despite these benefits, they often face
challenges in narrow passages, which can lead to significant
sampling inefficiencies [2].

More recently, optimization-based path planning has
emerged as another promising approach [7], [8], [9], [10],
framing the path planning problem as an optimization. These
methods leverage gradient information to quickly converge
to low-cost paths in terms of path length, or other task
specific metrics, and also offer greater flexibility in integrating
various cost and constraints. Despite their advantages, the
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Fig. 1: Overview of the proposed framework. First, from
a given convex decomposed obstacles in environment, an
environment complex is constructed from their nerve complex.
Next, a sequence of object additions is determined based
on the environment complex. Finally, path optimization is
performed using homotopy optmization, where each subprob-
lem is defined by a continuous interpolation of the collision
constraints as the convex objects are gradually introduced into
the environment according to the sequence.

inherent non-convexity of collision avoidance often leads to
local minima [9], particularly in narrow passages where deep
penetration is more likely. Deep penetration poses challenges
because contact features such as witness points and contact
normals are only well-defined when there is no contact or
minimal penetration [11]. Moreover, in situations of deep pen-
etration, especially when the path passes through the medial
axis [12], the contact normals between adjacent waypoints may
become inconsistent, thus pushing the optimizations in oppo-
site directions, making it difficult to escape from infeasibility
[9].

One effective approach to address the challenges in such
complex nonlinear optimization is the homotopy optimiza-
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tion method (HOM) [13]. HOM addresses such problems by
transforming the original problem into a series of simpler
subproblems, progressively modifying them to approximate
the original formulation.

However, during this transformation, the solution space
may undergo significant topological changes, such as the
emergence of abbreviated paths or folds [14]-which may
lead the optimizer to become stuck in infeasible regions.
Recognizing this, we propose a narrow passage path planning
framework that ensures topological consistency throughout the
homotopy process by aligning optimization-level homotopy
transformations with geometric-level homotopy equivalence
of the collision environment. Starting with relaxed collision
constraints, HOM facilitates the optimization for early-stage
subproblems, and the constraints are then gradually restored
to their original form, guiding the solution toward the goal.
Crucially, our framework guarantees that the transformation
preserves the homotopy equivalence of the occupied space
in Euclidean space. By maintaining this topological structure,
we reduce disruptions in the solution space and significantly
improves the likelihood that the path can be continuously
updated and remain feasible as the constraints are tightened.

To build this framework, our initial goal is to develop a
method of homotopy-preserving collision constraint interpo-
lation using a signed distance function (SDF). This process
begins by decomposing the obstacles in the environment into
convex objects. The subproblem sequence is constructed by
starting with a simplified environment containing only a subset
of the convex objects. Subsequent subproblems are created
by sequentially introducing additional convex objects into the
environment. At each step, the addition of new objects is
carried out through interpolation between the SDFs of the
newly added objects and the existing objects in such a way that
preserves the homotopy of the environment. Since direct inter-
polation of SDFs can create sharp surface transitions, we apply
a shaping function to smooth the resulting geometry. This
smoothing reduces abrupt changes in contact normals, thereby
improving optimization stability. To achieve this homotopy-
preserving constraint interpolation using SDF, we analyze
the topology of the environment using a simplicial complex,
which we refer to as an environment complex, and derive
the necessary conditions for the interpolation to preserve
homotopy.

Our second objective is to solve the narrow passage path
planning problem via HOM using the collision constraint
interpolation. The optimization progresses through a series
of subproblems, gradually restoring the simplified collision
constraints back to the original form while ensuring the path
satisfies the intermediate constraints at each step. This process
involves several key techniques including collision detection
of interpolated collision constraints, adaptive adjustment of the
interpolation variable, and continuous collision avoidance. By
systematically integrating these techniques, we can carry out
the optimization using the interpolated collision constraints.

A recent study [15] introduced a narrow passage path
planning method based on collision constraint interpolation.
However, its applicability is limited to environments composed
of convex objects with tree-like connectivity. Additionally, the
method suffers from inefficiencies due to challenges in broad-

phase collision detection and the rigid, increment-based update
of the interpolation variable, which can result in unnecessary
computations and difficulties in selecting an appropriate in-
crement. Furthermore, the method does not explicitly handle
continuous collision avoidance, which may cause intermediate
collisions to go undetected when collision checks are per-
formed only at discrete waypoints. Our work addresses these
limitations through the following contributions:

• An analysis on how the shaping function alleviates the
sharpness of the interpolated environment is presented in
Section V.

• In Section VI, we introduce the concept of an environment
complex to characterize the environment. This approach
allows for a broader range of environments, and we
provide a detailed analysis and rigorous proof concerning
the preservation of homotopy equivalence.

• In Section VII-A, a new broad-phase collision detection
method for the interpolated collision constraints is pro-
posed. Here, we introduce a novel concept called the
interpolated support function.

• Furthermore, an adaptive method for adjusting the in-
terpolation variable to enhance efficiency is provided in
Section VII-B.

• We propose a path refinement method to facilitate con-
tinuous collision avoidance in Sec. VII-C.

The rest of the paper is organized as follows. Section II
reviews related works, followed by Section III, which intro-
duces the notations used throughout the paper and provides
mathematical preliminaries. Section IV presents the prob-
lem formulation and outlines the assumptions underlying our
framework. In Section V, we propose the SDF interpolation
method between convex objects and extend it to homotopy-
preserving collision constraint interpolation. Section VII de-
scribes the optimization algorithm, which leverages the colli-
sion constraint interpolation. Path planning examples using our
proposed framework, along with some comparative analyses,
are presented in Sec. VIII. Finally, Section IX concludes the
paper with some summary and closing remarks.

II. RELATED WORKS

A. Narrow Passage Path Planning

Sampling-based path planning methods have long been a
primary solution to the planning problems. However, these
methods often struggle to efficiently explore narrow free
spaces in configuration spaces. To address this issue, non-
uniform guided sampling strategies have been developed to
improve sampling efficiency. Some approaches guide sampling
based on task objectives or exploration progress [16], [17].
While effective in many cases, these methods can struggle in
extremely narrow passages as they do not explicitly account
for the geometry information. Other approaches have exploited
obstacle geometry to improve sampling near obstacles or
within narrow passages-for example, sampling through medial
axis [18], retracting samples to free space [19], guiding
samples near surfaces using Gaussian sampling [20], and
directing tree growth toward obstacle boundaries [21]. These
strategies, by leveraging obstacle-induced structure, aim to ad-
dress the limitations of uniform random sampling in complex
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environments. More recently, learning-based guided sampling
techniques have been introduced to enhance the sampling
performance. These include learning sampling distribution
from demonstrations [22], selecting which pair of trees to
connect [23], or learning connectivity online during planning
[2]. Despite these advancements, a fundamental limitation
of sampling-based methods remains: they typically rely on
the availability of a feasible goal configuration, however,
identifying such a configuration is inherently challenging in
narrow passages.

Another branch of path planning research focuses on
optimization-based path planners, which formulates the path
planning problems as optimization. Techniques such as
CHOMP [7], STOMP [10], and TrajOpt [9] provide high-
quality paths than sampling-based methods, but are highly
prone to local minima, particularly in narrow passages where
deep penetration into obstacles is more likely. In such cases,
the difficulty in well-defining contact features and the incon-
sistencies in contact features between adjacent waypoints can
cause the optimization to fail, resulting in a trajectory that
becomes stuck in infeasibility.

To address the problem of local minima, recent literature
[24] proposed a method that formulates path planning as
a mixed-integer programming and applies convex relaxation
to efficiently find global solutions. The approach leverages
Graph of Convex Sets (GCS) to represent the configuration
space and solve the relaxed problem efficiently. Yet, when
faced with the narrow passage, constructing such GCS shares
some sampling inefficiencies observed in the sampling-based
methods. Algorithms such as C-IRIS [25] are used to generate
these graphs, which involve iteratively sampling a collision-
free configuration and expanding convex region around it.
This process requires repeated high-dimensional sampling
and collision checking, both of which becomes increasingly
inefficient in narrow passage environments [26]. In contrast,
our approach performs convex decomposition directly on the
obstacles in Euclidean space, which avoids sampling in con-
figuration space and repeated collision checking. As a result,
it remains efficient even in narrow passage environment.

B. Homotopy Optimization Method
Homotopy optimization method is an approach that ad-

dresses complex optimization problems by progressively solv-
ing a series of subproblems, starting from a simpler version
and gradually increasing the complexity, transforming into the
original problem [27]. This approach has been adopted to
various optimization challenges in robotics due to its effec-
tiveness in managing complex constraints. Especially, various
collision-free motion planning problems have been addressed
by adjusting model parameters [14], contact dynamics [28],
position of obstacles [29], and collision avoidance thresholds
[30], [31] to create more manageable subproblems.

As the complexity of the problem increases, however, the
solution space can undergo significant changes, leading to
more complicated topology of solution space [14]. These
changes can disrupt the transition from intermediate solutions
to the final desired path, especially when there are large shifts
in the solution space between successive subproblems. To
circumvent this issue, [14] proposes a probabilistic approach,

wherein the homotopy parameter is sampled to prevent the
optimization from becoming stuck in local minima within
intermediate subproblems. However, this approach has ambi-
guity in determining which variable quantity should be used as
the homotopy parameter and and how it should be initialized
to simplify the problem.

Our methodology adopts a different approach to address
the problem of changes in the solution space. By relaxing
collision constraints to generate subproblems, we ensure that
the occupied space defined by these constraints maintains
homotopy equivalence throughout the transformation process.
This approach mitigates issues arising from changes in the
solution space, such as the emergence of abbreviated paths,
while also circumventing the challenge of selecting a specific
variable to serve as the homotopy parameter.

C. Shape Interpolation
Shape interpolation methods generally aim to generate

plausible transitions between multiple shapes. The technique
is widely adopted in various computer graphics applications,
including animation and motion pictures. These methods typi-
cally involve selecting specific geometric quantities (e.g., mesh
or implicit function), interpolating these quantities between
the shapes, and then reconstructing the shapes from the
interpolated quantities [32].

Traditional mesh-based interpolation selects mesh and ver-
tex points as the geometric quantities, construct transformation
matrices between the nodes of the shapes, and extract the
morph from these matrices [33]. However, these methods often
require consistent tetrahedral meshes of the shapes, which is
not always achievable, and may result in undesirable artifacts
such as large distortions [34]. Beyond mesh-based quantities,
implicit distance function-based quantities have also been
explored for shape interpolation. These include interpolation
via weighted Minkowski summation [35], Wasserstein distance
over space probability [36], and smoothed SDF interpolation
using variational implicit function [37].

While traditional shape interpolation methods in computer
graphics focus on visually seamless transitions and preserv-
ing geometric properties, they are not inherently designed
to maintain topological consistency. This limitation hinders
their applicability in HOM, as topological inconsistencies
can significantly alter the solution space, complicating path
planning. Our method overcomes this limitation by introducing
homotopy-preserving interpolation using SDF, tailored for
efficient path planning.

III. NOTATIONS AND MATHEMATICAL PRELIMINARIES

A. Signed Distance Function and Occupied Space
The Signed Distance Function (SDF) for an object v in R3

is a function that quantifies the distance from any point x ∈ R3

to the surface of the object. Denoted as sdv(·) : R3 → R, it is
formally defined as:

sdv(x) =

− inf
y∈∂v

d(x, y) if x ∈ v

inf
y∈∂v

d(x, y) else

where ∂v is the boundary of v, and the metric d(x, y)
represents the Euclidean distance between point x and y. For

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3641759

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



4

(a) K (b) st(v2,K) (c) lk(v2,K)

Fig. 2: Example of a simplicial complex consists of four
vertices {v1, v2, v3, v4}, and a star and a link of a vertex v2.

a collection of objects V = {v1, . . . , vn}, the combined SDF
is given by sdV(x), defined as:

sdV(x) := min(sdv1 , . . . , sdvn)

Let us define an occupied space of a function d(·) : R3 → R
as a set corresponds to the region in R3 where function d is
non-positive:

O(d) =
{
x ∈ R3 | d(x) ≤ 0

}
Here, d(x) = 0 implicitly defines the surface of the occupied
space. For a point x ∈ R3 lying on the surface d(x) = 0, the
normal vector at the point, denoted as n(x), is given by the
gradient ∇d(x):

n(x) :=
∇d(x)
∥∇d(x)∥

(1)

The occupied space of the SDF of a collection of objects
V , denoted as OV , is exactly the union of the occupied space
of the individual objects:

OV := O(sdV) =
⋃
v∈V

v

Furthermore, for any functions g1(·), g2(·) ∈ R3 → R, the
following property holds:

O(min(g1, g2)) = O(g1) ∪ O(g2) (2)

B. Abstract Simplicial Complex

A simplicial complex is a standard concept in algebraic
topology, defined as a mathematical structure composed of
simplices [38]. A simplex is the convex hull of finite sets
of points in a Euclidean space. Depending on the number
of points, a 0-simplex is a single point, a 1-simplex is a
line segment connecting two points, a 2-simplex is a filled
triangle formed by three points, and so on. Each simplex
also contains lower-dimensional simplices as its faces. For
example, a triangle (2-simplex) has faces of vertices (0-
simplices) and edges (1-simplices). A simplicial complex is
a set of simplices that satisfies the following conditions:

1) Face condition: If a simplex is a part of the complex, all
its faces must also be part of the complex.

2) Intersection condition: If two simplices intersect, their
intersection must be a face of both simplices.

Building on this concept, the well-established notion of an
abstract simplicial complex generalizes this idea by focusing
on the combinatorial relationships between vertices, rather
than their geometric representation [38]. Formally, an abstract
simplicial complex K = (V,Σ) is defined as a pair of a finite

set of vertices V and a simplices Σ, which is subsets of V ,
that satisfies:

σ ∈ Σ, τ ⊆ σ, τ ̸= ∅ ⇒ τ ∈ Σ (3)

where each simplex σ ∈ Σ is a nonempty finite subset of
vertices, and τ ∈ Σ denotes any nonempty subset of σ.
This condition (3) mirrors the face condition of a simplicial
complex. In this paper, the term complex specifically refers to
an abstract simplicial complex for simplicity.

A closed star of a vertex v in K = (V,Σ) is a subcomplex
defined as follows:

st(v,K) := {σ ∈ Σ | σ ∪ {v} ∈ Σ}

The link of v in K is defined as the set of simplices in st(v,K)
that do not contain v:

lk(v,K) := {σ ∈ st(v,K) | v /∈ σ}

A simplicial cone with vertex v over a complex K = (V,Σ)
is defined as:

vK := {{v} , τ | τ ∈ Σ or τ = σ ∪ {v} , σ ∈ Σ}

where v is a vertex not included in V . The operation of deleting
a vertex v from a complex K is defined as:

K − v := {σ ∈ Σ | v /∈ σ}

Example Consider the following abstract simplicial com-
plex K with vertices v1, v2, v3, v4 and the following simplices:

K = {{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v2, v3},
{v3, v1}, {v1, v4}, {v1, v2, v3}}

which can be seen that it satisfies (3), and can be visualized
as Fig. 2a. In the figure, each vertex represents a simplex of
cardinality one, each edge represents a simplex of cardinality
two, and each triangle represents a simplex of cardinality three.

For vertex v2, the closed star st(v2,K) and the link of v2
can be represented as:

st(v2,K) = {{v1}, {v2}, {v3}, {v1, v2}, {v2, v3},
{v3, v1}, {v1, v2, v3}}

lk(v2,K) = {{v1}, {v3}, {v1, v3}}

which can be visualized as Fig. 2b and Fig. 2c.

C. Homotopy, Homotopy Equivalence, and Homotopy Opti-
mization Method

Definition 1 (Homotopy). A homotopy between two contin-
uous functions f, g : X → Y is a continuous map H :
X×[0, 1]→ Y such that H(x, 0) = f(x) and H(x, 1) = g(x)
for all x ∈ X .

Intuitively, a homotopy provides a smooth deformation from
f to g. When we extend the idea of homotopy to topological
spaces, we obtain the notion of homotopy equivalence, which
captures a fundamental similarity between spaces based on
their deformability.

Definition 2 (Homotopy equivalence). Two topological spaces
X and Y are said to be homotopy equivalent if there exist
continuous maps f : X → Y and g : Y → X , such that the
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compositions g ◦ f and f ◦ g are homotopic to the identity
maps on X and Y , respectively. In this case, X and Y are
homotopy equivalent, denoted X ≃ Y .

Intuitively, two spaces X and Y are homotopy equivalent if
one can be transformed into the other through operations such
as bending, stretching, or shrinking, without any tearing or
gluing. Spaces that are homotopy equivalent to a point is called
contractible. A transformation between spaces is said to be
homotopy-preserving if it maintains the homotopy equivalence
between the initial and final spaces.

The concept of homotopy can also be applied to optimiza-
tion to solve a challenging nonlinear optimization problem.

Definition 3 (Homotopy optimization method). The homotopy
optimization method (HOM) addresses optimization problems
by continuously transforming a problem into a simpler form
and then progressively restoring it to the original form. For
an optimization problem F (x) over a feasible set x ∈ X ,
HOM constructs a homotopy H(x, α), where α ∈ [0, 1] is a
continuation parameter, such that:

1) H(x, 0) is a simplified optimization problem that is easy
to solve: H(x, 0) = Feasy(x).

2) H(x, 1) corresponds to the original optimization prob-
lem: H(x, 1) = F (x).

3) H(x, α) smoothly transitions between H(x, 0) and
H(x, 1).

Despite the shared terminology, it is important to note that
the term “homotopy” in HOM is not directly related to the
topological concept of homotopy equivalence. Instead, it refers
to the idea of a continuous transformation parameterized by
α.

D. Nerve Complex
A nerve complex of a set is an abstract simplicial complex

that represents the structure of how sets in a collection intersect
[38].

Definition 4 (Nerve complex). Consider a collection of sets
V = {vi}i∈I indexed by I. The nerve of V , denoted as N(V),
is an abstract simplicial complex where set of all finite subsets
J ⊆ I such that the intersection of the corresponding sets vj
for j ∈ J is non-empty:

N(V) :=

J ⊆ I |
⋂
j∈J

vj ̸= ∅


The nerve complex N(V) can in certain cases accurately

represent the topology of V . The following theorem provides
sufficient conditions for V guaranteeing that N(V) represents
the topology of

⋃
i∈I vi.

Theorem 1 (Nerve theorem [38]). Consider a given family
of sets V = {vi}i∈I . If any intersection of sets in N(V) is
contractible, then N(V) is homotopy equivalent to

⋃
i∈I vi.

In other words, by serving as an algebraic tool for ana-
lyzing the topology of the union

⋃
i∈I vi, the nerve complex

reduces continuous topological question to discrete combina-
torial computations, enabling more straightforward calculation
of homotopy preservation.

E. Dominated Vertices and Homotopy Equivalence

A concept of vertex domination provides a useful tool
for understanding the topological structure of simplicial com-
plexes and their homotopy equivalence.

Definition 5 (Dominated vertex). Consider a simplicial com-
plex K and a vertex v, such that {v} ∈ K. The vertex v is said
to be dominated by another vertex v̂ in K, if its link lk(v,K)
is a simplicial cone v̂L, where L ⊂ K.

When a vertex v is dominated in a simplicial complex K,
the removal of v does not change the homotopy of K [39],
formally expressed as:

K − v ≃ K (4)

IV. PATH PLANNING OPTIMIZATION FORMULATION

A typical path planning optimization can be formulated as:

min
q

nq−1∑
l=1

∥ql+1 − ql∥2 + oi(qn1) + og(qnq ) (5a)

s.t. g(q) ≥ d̂ (5b)

where ql ∈ Rnr is l-th waypoint of the robot, nr is the
dimension of the state of the robot, nq is the number of the
waypoints, q = {q1, . . . , qnq} is the sequence of the waypoints
of the robot, oi(qn1

), og(qnq
) are the cost term for initial pose

and desired goal respectively, g(q) is the distance between the
robot at the waypoints and the environment, and d̂ ∈ R+ is
the safe distance. Notably, the formulation offers flexibility,
allowing additional constraints or optimization variables to be
incorporated as needed.

We consider obstacles in environment decomposed into a set
of convex objects Vtot. The environment can be characterized
with a nerve complex of these convex objects, denoted as
N(Vtot), which we refer to as an environment complex. In
what follows, we refer to each convex object in Vtot as a vertex
of the environment complex N(Vtot). Note that any nonempty
intersection of convex objects forms a contractible space
[38]. Consequently, by Theorem 1, N(Vtot) and Vtot become
homotopy equivalent, providing a foundation for topological
analysis of the environment using N(Vtot).

Before delving into the details of the methodology, it is
important to highlight the key assumptions underlying our
framework:

1) The polyhedral mesh representation of the robot is as-
sumed to be known.

2) The SDF for each convex object in Vtot is assumed to be
precomputed and available for use.

Under these assumptions, the distance between the robot at the
waypoints and the environment, g(q) can be calculated as:

g(q) = min
x∈W (q)

sdVtot(x)

where W (q) is the union of the given polyhedral meshes of
the robot at the waypoints q1, · · · , qnq

.
We aim to solve the narrow passage path planning problem

(5) using the homotopy optimization method, which starts
with simplified constraints and gradually transforms them
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into the original constraints (5b). The relaxed subproblem,
parameterized by the homotopy parameter α ∈ [0, 1], can be
formulated by substituting the collision constraint as:

gk(q, α) ≥ d̂ (6)

where g(q, α) is the homotopy-transformed gap function.
This transformed gap function is formulated through an SDF
interpolation between convex objects, which is described in
detail in Sec. V and Sec. VI.

V. SDF INTERPOLATION BETWEEN CONVEX OBJECTS

To construct the continuous interpolation of the collision
avoidance constraint from a simplified constraints (6) to the
original complex contraints, we initialize the environment
with a subset of the convex objects V0 ⊂ Vtot. The grad-
ual transformation from these simplified initial constraints to
the original complex constraints is realized by continuously
interpolating the constraints as additional convex objects are
progressively introduced. As a foundation for this continuous
interpolation, we first define and explore the characteristics of
SDF interpolation between two intersecting convex objects.

A. SDF Interpolation between Convex Objects
We first define an interpolated SDF between two convex

objects v1 and v2 as:

sdv1→v2(x, α) := (1− α)f(sdv1(x)) + αf(sdv2(x)) (7)

where α ∈ [0, 1] is an interpolation variable, f : R → R is a
shaping function that satisfies following conditions:

Property 1 (Shaping function). A shaping function f satisfies
following conditions:

1) f(0) = 0
2) f is increasing, and convex

Then, let us define interpolated object vv1→v2
(α) from the

interpolated SDF as:

vαv1→v2 := O
(
sdα

v1→v2
(·, α)

)
(8)

This interpolated object transitions from v1 at α = 0 to
v2 at α = 1. During this transformation, regardless of the
shaping function used, the intermediate shapes retain important
properties: they remain convex, contain v1∩v2, and contained
in v1 ∪ v2, as can be seen in Fig. 4.

Proposition 1. If two convex objects v1 and v2 intersect (i.e.,
v1 ∩ v2 ̸= ∅), the interpolated object, denoted as vv1→v2(α)
(8) is convex, and satisfies the following:

v1 ∩ v2 ⊆ vv1→v2(α) ⊆ v1 ∪ v2 (9)

Proof. Since SDF of a convex object is a convex function [40],
both sdv1(·) and sdv2(·) are convex functions. Considering
the properties of the shaping function, which are convex and
increasing, f(sdv1

(·)) and f(sdv2
(·)) also retain convexity.

Moreover, the function sdv1→v2
(·, α), defined as a non-

negative linear combination of the convex functions, inher-
ently preserves convexity. Therefore, the interpolated object
vv1→v2(α) forms a convex space, since a sublevel set of a
convex function is also a convex [41].

(a) Visualization of medial
axis of v2

(b) Sharp ridge of the inter-
polated object formed on x0

Fig. 3: Given x0 on the medial axis of v2 and outside v1,
sharp ridge is generated on x0 for some α when using identity
shaping function f(x) = x.

For any x ∈ R3 that is in v1 ∩ v2, following is satisfied:

sdv1(x) ≤ 0 and sdv2(x) ≤ 0,

⇒ sdv1→v2
(x, α) ≤ 0

Moreover for arbitrary x ∈ vv1→v2
(α), following is satisfied:

sdv1→v2(x, α) ≤ 0

⇒ sdv1(x) ≤ 0 or sdv2(x) ≤ 0

Therefore, v1 ∩ v2 ⊆ vv1→v2
(α) ⊆ v1 ∪ v2 is satisfied.

B. Alleviating Sharpness using Shaping Function
The shaping function f(·) is designed to allieviate the

sharpness of the surface of the interpolated object. Without
such a shaping function, i.e., f(x) = x, the SDF interpolation
(7) becomes a linear interpolation. Then, sharp ridges are
formed on the medial axis of each object, which is the set
of points equidistant from more than one closest point on the
surface [37], as illustrated in Fig. 3. These sharp ridges can
cause abrupt changes in the contact normals between adjacent
waypoints, which is highly undesirable for the optimization.

Consider two intersecting convex objects v1 and v2, and
x0 ∈ R3 which lies on the medial axis of v2 and outside v1.
We demonstrate that there always exists α such that vv1→v2(α)
has sharp ridge at x0, and the sharpness is alleviated when
shaping function is utilized.

1) Linear interpolation: We can define a value αl such that
x0 lies on the surface of an interpolated object vv1→v2(αl):

(1− αl)sdv1(x0) + αlsdv2(x0) = 0 (10)

Given sdv1(x0) > 0 and sdv2(x0) < 0, αl ∈ [0, 1] is satisfied.
SDF is not differentiable at points on the medial axis [42].

Since x0 lies on the medial axis of v2, sdv2
(x0) is not

differentiable at this point. Consequently, there are multiple
possible directional derivatives at x0, each pointing to a
different closest point on the surface of v2. According to (1),
the surface normal of vv1→v2

(αl) is obtained by differentiating
(10). However, this normal cannot be uniquely defined because
sdv2(x0) lacks a unique derivative at that point. Instead, we
obtain several possible unnormalized normal vectors, such as
n(1) and n(2):

n(1) := (1− αl)nv1 + αln
(1)
v2

n(2) := (1− αl)nv1 + αln
(2)
v2

(11)
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where nv1 := ∇sdv1(x)|x=x0
is the normal of v1 at x0,

and n
(1)
v2 and n

(2)
v2 are two different directional derivatives of

sdv2(x). The discrepancy between n
(1)
v2 and n

(2)
v2 leads to a

discontinuity in the surface normal of the interpolated object
n(1) and n(2), resulting in the formation of a sharp edge, as
shown in Fig. 3b.

2) Shaped interpolation: To alleviate this sharp ridges, a
properly designed shaping function f(·) can be used. Let αs

be a interpolation variable chosen so that x0 lies on the surface
of the interpolated object vv1→v2(αs) shaped by f :

(1− αs)f(sdv1(x0)) + αsf(sdv2(x0)) = 0 (12)

where, given that f(sdv1(x0)) > 0 and f(sdv2)(x0) < 0,
αs ∈ [0, 1] is satisfied. The surface normals at x0 can also
be obtained by differentiating (12):

n(1) = (1− αs)f
′(sdv1(x0))nv1 + αsf

′(sdv2(x0))n
(1)
v2

n(2) = (1− αs)f
′(sdv1(x0))nv1 + αsf

′(sdv2(x0))n
(2)
v2

(13)

where f ′ is the gradient of f .
3) Comparison of sharpness: To quantify the sharpness

of the interpolated object, we define a discontinuity-inducing
normal ratio γ. It is a measure of the relative size of the weight
of the discontinuous normal in the weighted summation in (11)
and (13). Since n

(1)
v2 and n

(2)
v2 induces the discontinuity, γ for

each linear interpolation and shaped interpolation is:

γlinear =
αl

1− αl

γshaped =
αs

1− αs

f ′(sdv2(x0))

f ′(sdv1(x0))

(14)

A larger value of γ implies a larger weight for the
discontinuity-inducing normal, which results in larger angular
discrepancy between the surface normals, creating sharper
ridges. Following proposition shows that by introducing the
shaping function, γ is reduced, so that the sharp edges are
alleviated.

Proposition 2. With shaping function satisfying Property 1,
for normal vectors on a medial axis of v2, it follows that

γlinear ≥ γshaped

Proof. See Appendix B.

One example of the shaping function is modeled using an
exponential formula, which adheres to Property 1:

f(x) =
1

η
(exp (ηx)− 1) (15)

where η ∈ R+ acts as a scaling factor. It is noteworthy
that as η approaches zero, (15) converges to f(x) ≈ x,
thereby simplifying the proposed interpolation (7) to linear
interpolation between sdv1(·) and sdv2(·). Fig. 4 visually
demonstrates how varying values of η affect the shape of
the interpolated object. As η increases, the interpolated object
becomes increasingly smoothed, eliminating the sharp ridges.
However, when η becomes too large, the exponential shaping
function introduces significant nonlinearity into the collision
avoidance constraints, deviating from the local linearity of
the SDF in the normal direction, and can therefore slow
convergence.

Fig. 4: Shape of the interpolated object using proposed shaping
function (15) with η = 40 (top row), η = 15 (middle row) and
linear interpolation η → 0 (bottom row)

VI. HOMOTOPY-PRESERVING COLLISION CONSTRAINTS
INTERPOLATION

In this section, we aim to propose a collision constraints
interpolation between the initial simplified constraints to the
original complex constraints. This interpolation is constructed
by continuously interpolating the constraints while progres-
sively introducing convex objects into the environment, utiliz-
ing the SDF interpolation proposed in Sec. V.

While this framework leverages HOM to handle complex
constraints, it inherits a known limitation: the transformed
problem may disrupt the homotopic landscape, due to emer-
gence of abbreviated paths or folds [14], increasing the risk
that the path become stuck in infeasibility. To mitigate these
issues, we aim to preserve the homotopy equivalence of the
occupied space in Euclidean space. When homotopy equiva-
lence is preserved, the path is more likely to be continuously
updated to stay within the free space (Fig. 5b). Conversely,
if this homotopy equivalence is lost, the trajectory could
stuck in infeasibility or severely torn by obstacles, unable to
retain in the free space through any continuous deformation
(Fig. 5a). Therefore, we aim to propose a collision constraint
interpolation that preserves homotopy of the environment.

A. Collision Constraint Interpolation using SDF and Collapsi-
ble Sets

To achieve a homotopy-preserving collision constraints
interpolation, we construct a sequence of environments by
progressively introducing convex objects into the initial set
V0 ⊂ Vtot. At each k-th sequence, a new set of objects
Vc
k ⊂ Vtot \ Vk among the remaining objects is introduced

into the current set of objects Vk:

Vk+1 = Vk ∪ Vc
k

We aim to show that the homotopy-preserving collision
constraint interpolation from Vk to Vk+1 can be derived when
Vc
k is a collapsible set of Vk+1, defined as following.
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(a) The path cannot stay feasible with continuous updates, due to
the change in homotopy.

(b) Using our framework, the path can maintain feasibility with
continuous update, leading to successful path planning.

Fig. 5: Comparison of homotopy equivalence and the corre-
sponding path planning outcomes when performing constraint
interpolation using two distinct formulas.

(a) Valid removal of a collapsible set Vc = {v2, v6}: both
the geometry (left) and the environment complex (right) remain
connected, preserving homotopy.

(b) Invalid removal of a vertex v3: the geometry(left) and the
complex (right) both split, breaking homotopy.

Fig. 6: Examples of valid and invalid sequneces of removing
convex objects (left), and their corresponding environment
complexes (right).

Definition 6 (Collapsible set). A set of vertices Vc is called
a collapsible set of V if:

1) Each vertex in Vc is dominated in N(V), by another
vertex in V \ Vc.

2) No vertices in Vc intersect with each other.

Note that removing this collapsible set Vc from V preserves
homotopy type [39]. Fig. 6 illustrates two examples of remov-
ing vertices in an environment complex. In Fig. 6a, the set
of vertices {v2, v6} is a collapsible set (Definition 6) and its
removal preserves homotopy. In contrast, in Fig. 6b, removing
vertex v3, which is not dominated by any other vertex, tears
the complex and breaks homotopy preservance.

Let Vc
k = {vc1, . . . , vcnc

} and Vk = {v1, . . . , vn}, where nc

Algorithm 1 Identification of collapsible set

1: Input: Environment complex K, vertex set V
2: Output: Collapsible set Vc

3: Vc ← [ ]
4: for v ∈ V do
5: if ∃ vc ∈ Vc s.t.{v, vc} ∈ K then
6: continue
7: end if
8: for v̂ ∈ V that {v, v̂} ∈ K do
9: if v̂ dominates v then

10: Append v to Vc

11: Delete v̂ from V
12: break
13: end if
14: end for
15: end for

and n are the number of vertices in Vc
k and Vk respectively.

Note that nc and n depend on k, but for brevity, we omit the
dependence in the notation. Since Vc

k is a collapsible set of
Vk ∪ Vc

k, each vertex vci ∈ Vc
k is dominated by vσ(i) ∈ Vk,

where σ : {1, . . . , nc} → {1, . . . , n} maps the index of the
dominating vertex in Vk.

Then, we can formulate the interpolated SDF between Vk
and Vk+1 as:

sdVk→Vk+1
(x, α) := min(sdVk

(x),sdvσ(1)→vc
1
(x, α), . . .

sdvσ(nc)→vc
nc
(x, α))

(16)

which interpolates between Vk and Vk+1 as:

sdVk→Vk+1
(x, α) =

{
sdVk

(x), if α = 0

sdVk+1
(x), if α = 1

Following theorem shows that the occupied space of the
interpolated SDF preserves homotopy equivalence.

Theorem 2. Let Vc
k be a collapsible set of Vk+1, as defined

in Definition 6. Then, the occupied space of the interpolated
collision constraint (16), denoted as O

(
sdVk→Vk+1

(·, α)
)
, is

homotopy equivalent regardless of α.

Proof. See Appendix C.

Fig. 13 presents interpolation results across diverse envi-
ronments. As guaranteed by Theorem 2, Fig. 13 confirms that
homotopy of the occupied space is preserved throughout the
continuous interpolation.

The collapsible set Vc of a given set V can be identified
using Algorithm 1. While iterating over v ∈ V , we first check
if v does not collide with any other vertices in Vc to ensure
distinctness as required by the second condition on Definition
6 (Line 5-7). Then, if there is a vertex among the adjacent
vertices that dominates v, v is identified as the element of a
collapsible set, and added into Vc. Note that the dominating
vertex v̂ should be removed from V to prevent it from being
added to Vc, as dominating vertices should be in V \Vc (Line
11).
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Fig. 7: Three example collapsible set removal sequences on the
same environment. Although each sequence removes convex
objects in a different order, all three leave a single remaining
convex object, visually confirming Thm. 3.

Algorithm 2 Sequence construction for collapsible sets

1: Input: Environment complex K = N(Vtot)
2: Output: Sequence of collapsing sets V s

3: k ← 1
4: repeat
5: Find collapsible set Vc

k (Algorithm 1)
6: K ← K − Vc

k

7: k ← k + 1
8: until |Vc

k| > 0
9: V c = {Vc

k,Vc
k−1, . . . ,Vc

1}

B. Sequence Construction for Convex Object Addition

To make the path initialization of the optimization as
straightforward as possible, it is desirable to start with a
minimal number of initial objects, simplifying the collision
constraint. This sequence is constructed by sequentially iden-
tifying and removing collapsible sets, starting from the envi-
ronment complex composed of Vtot. The following proposition
provides the foundation for our efficient sequence identifica-
tion algorithm.

Theorem 3. In the environment complex N(V), repeatedly
identifying and eliminating collapsible sets, regardless of
which collapsible set is chosen at each step, leads to a state
where no further collapsible sets remain. At this point, the
number of remaining vertices is invariant.

Proof. See Appendix D.

An example of three distinct sequences for removing col-
lapsible set is shown in Fig. 7. At each step there are multiple
choices of which set to remove, so the order of removals can
vary. Nonetheless, as Fig. 7 illustrates, regardless of which
collapsible set is chosen at each step, the same number of
convex objects remains (in this example, a single object). It
demonstrates that the environment can always be reduced to
its simplest form without exhaustively searching every possible
sequence.

The algorithm of identifying the sequence is demonstrated
in Algorithm 2. Starting from total convex objects Vtot, a col-
lapsible set Vc

k is identified at each k-th step using Algorithm
1. This set Vc

k is then removed from the environment complex
(Line 6), and the process repeats until no further collapsible
set can be identified. Finally, the sequence of the collapsible

sets is established by reversing the order of Vc
k (Line 9). The

remaining objects, after all collapsible sets have been removed,
become the initial objects.

This algorithm is designed to leave as few objects as
possible as initial objects. However, if many objects need to
be introduced sequentially, the optimization process may take
longer. In such cases, the user can choose not to include all
possible objects in the collapsible set (Algorithm 1. Line 9 -
13).

VII. IMPLEMENTATION OF PATH PLANNING USING HOM

We aim to solve the narrow passage path planning problem
(5) using the HOM, which generates a series of subproblems
with collision constraints interpolation, as described in Sec.
VI. The subproblem corresponding to the k-th sequence of
collapsible set additions is formulated by substituting the
collision constraints (5) as:

min
q

nq−1∑
l=1

∥ql+1 − ql∥2 + oi(q1) + og(qnq )

s.t. gk(q, α) ≥ d̂

(17)

where gk(q, α) is defined using the interpolated SDF (16) as:

gk(q, α) = min
x∈W (q)

sdVk→Vk+1
(x, α) (18)

By sequentially solving these subproblems (17), which involve
progressively adding convex objects and gradually increasing
the interpolation variable α from 0 to 1 at each sequence, the
solution is guided toward the goal. However, several remaining
issues arise during this process, which are addressed in detail
in this section.

A. Collision Detection of Interpolated Environment

To solve the path planning optimization (17), collision
detection between the robot at the waypoints and the inter-
polated environment must be performed. However, because
the interpolated environment is represented as a signed dis-
tance function (SDF) rather than explicit geometry, standard
collision detection methods such as Gilbert-Johnson-Keerthi
with Expand Polytope Algorithm (GJK-EPA) and broad-phase
methods like Axis-Aligned Bounding Box (AABB) or Ori-
ented Bounding Box (OBB), can not be directly applied.

1) Narrow-phase collision detection: To accurately com-
pute the minimum distance (i.e. interpolated SDF) between
the robot and the interpolated environment, we solve the opti-
mization (18) using the Frank-Wolfe algorithm [43]. Unlike
conventional narrow-phase collision detection methods that
require access to meshes or support functions, Frank-Wolfe
can operate directly on the interpolated SDF by minimizing it
over the polyhedral workspace W (q). This avoids the need
for costly geometric reconstruction or sampling, making it
particularly suitable for our setting where the environment
geometry transforms continuously with α.

2) Broad-phase detection: Broad-phase collision detection
also plays a crucial part in path planning by quickly filter-
ing out potential collisions by simplified representations of
geometry [44]. To perform broad-phase collision detection,
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Fig. 8: Process of interpolation between a cone and a box. Occupied space of the interpolated support function (pink) bounds
the occupied space of the interpolated SDF (brown).

it is necessary to approximate the occupied space of the
interpolated collision constraint (16), which is defined as:

O(sdVk→Vk+1
(·, α))

= OVk
∪ vvσ(1)→vc

1
(α) ∪ · · · ∪ vvσ(nc)→vc

nc
(α)

(19)

Since Vk is invariant with respect to α, its bounding volume,
such as AABB or OBB, can be precalculated. In contrast, the
geometry of the interpolated objects vvσ(i)→vc

i
varies dynami-

cally with the interpolation variable α, making it impossible to
precompute their bounding volume in advance. Additionally,
extracting their bounding volumes or approximate geometries
requires additonal steps like optimization or sampling.

To tackle this, we propose a broad-phase method that
generates bounding volumes for the interpolated objects
vvσ(i)→vc

i
(α), using support function. Using a support function

h(·) : R3 → R, a corresponding space is represented as:

Os(h) := {x ∈ R3 | yTx ≤ h(y), ∀y ∈ R3}

We define an interpolated support function to form a bound
of the interpolated objects.

Definition 7 (Interpolated support function). Given two sup-
port functions hv1 and hv2

, we define an interpolated support
function as:

hv1→v2(y, α) := (1− α)hv1(y) + αhv2(y) (20)

Due to the sublinearity of support function, the interpo-
lated support function (20) also retains sublinearity, thereby
ensuring that the corresponding space (i.e. Os (hv1→v2(·, α)))
forms a unique convex object [45]. Then, following theorem
shows that the interpolated object vv1→v2(α) is bounded by
the corresponding space of the interpolated support function,
as illustrated in Fig. 8.

Theorem 4. The space corresponds to the interpolated sup-
port function (20) encompasses the vv1→v2(α) represented by
an interpolated SDF (7):

vv1→v2
(α) ⊆ Os(hv1→v2

(·, α))

with an arbitrary shaping function that satisfies Property 1.

Proof. See Appendix E.

The key advantage of utilizing the interpolated support
function lies in its convertibility into simple primitives such
as AABB or OBB. For example, to calculate AABB of the
interpolated object vv1→v2

(α), the maximum and minimum

extents of the objects along the x, y and z axes are required.
These values can be derived by evaluating the gradient of the
support function in the positive and negative directions along
each axis. As an example for the x-axis:

Mx = ∇hv1→v2(x⃗, α), mx = ∇hv1→v2
(−x⃗, α)

where x⃗ is the x-axis, Mx and mx represent the maximum and
minimum extents, respectively. Note that this method of using
an interpolated support function method provides a tighter
bound compared to naively using the union of the meshes
of v1 and v2.

Then, the bounding volume for the occupied space (19) can
be obtained as the union of the bounding volume of Vk, which
is either precomputed or derived from explicit geometry, and
the bounding volumes of the interpolated objects vvσ(i)→vc

i
(α),

calculated using the interpolated support function (20).

B. Adaptive Increase of Interpolation Variable

The interpolation variable α, ranging from 0 to 1, deter-
mines the degree of the progression in the interpolation of each
sequence. The adjustment of α must balance computational
efficiency and collision avoidance. If the increments in α
are too small, the process incurs unnecessary computational
overhead, especially when the trajectory is far from any
collision risk. Conversely, if the increments are too large, the
robot may penetrate deeply into the environment, which is
undesirable for successful optimization.

To address this issue, we adaptively determine α by finding
the maximum value of α that maintains a minimum safe
distance d∗ ∈ R, between the robot and the interpolated
environment. This is formulated as the following optimization
problem:

α∗ = argmax
α∈[0,1]

α, s.t. gk(q, α) ≥ d∗ (21)

where the constraint can be rewritten from (18) and (16) as:

sdVk
(x) ≥ d∗ (22a)

sdvσ(i)→vc
i
(x, α) ≥ d∗ (22b)

for all x ∈W (q) and i = 1, . . . , nc.
If the minimum distance between the robot and the current

set Vk falls below d∗, the constraint (22a) is violated, rendering
the optimization (21) infeasible. In such cases, the optimiza-
tion is skipped, and α is incremented by a small predefined
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Algorithm 3 Adaptive α determination

1: Input: Vk, Vc
k, X

2: Initialize α∗ = 1
3: for each sample xj ∈ X do
4: if sdVk

(xj) ≤ 0 then
5: return α+∆α
6: end if
7: for i = 1, . . . , nd do
8: if sdvc

i
(xj) < sdvσ(i)

(xj) then
9: Calculate α∗

ij (24)
10: α∗ ← min(α∗, α∗

ij)
11: end if
12: end for
13: end for
14: return α∗

value, ∆α. Otherwise, this constraint can be ignored, as it is
independent with α and does not influence the solution.

Given the intensive computational demands of the optimiza-
tion (21) and the relatively low priority of exact optimality, we
simplify the process by satisfying the constraint (22b) only at
a discrete set of sampled points X = {x1, . . . , xnx

} ⊂W (q),
where each sampled point xj ∈ R3, rather than over the entire
surface W (q). The optimization problem is then reformulated
as:

α∗ = min
i∈1:nc,j∈1:nx

α∗
ij

α∗
ij = argmax

α∈[0,1]

α s.t. sdvσ(i)→vc
i
(xj , α) ≥ d∗ (23)

We then solve each low-level problem of (23) for all
combinations of i and j. For cases of i and j where sdvc

i
(xj) <

sdσ(i)(xj), the constraint can be reformulated as:

sdvσ(i)→vc
i
(xj , α) ≥ d∗

⇔ (1− α)f
(
sdvσ(i)

(xj)
)
+ αf

(
sdvc

i
(xj)

)
≥ d∗

⇔ α ≤
d∗ − f(sdvσ(i)

(xj))

f(sdvc
i
(xj))− f(sdvσ(i)

(xj))︸ ︷︷ ︸
≥0

This result defines α∗
ij , the maximum feasible value of α for

this i and j:

α∗
ij = min

(
1.0,

d∗ − f(sdvσ(i)
(xj))

f(sdvc
i
(xj))− f(sdvσ(i)

(xj))

)
(24)

where 0 ≤ α∗
ij ≤ 1 is satisfied. Note that α∗

ij can be efficiently
computed since the interpolation is designed to be linear with
respect to α.

On the other hand, if sdvc
i
(xj) ≥ sdvσ(i)

(xj), the constraint
similarly expands to:(

f(sdvc
i
(xj))− f(sdvσ(i)

(xj))
)︸ ︷︷ ︸

≥0

α ≥ d∗ − f(sdvc
i
(xj))︸ ︷︷ ︸

≤0

which is always satisfied for α within its valid range [0, 1]. As
such, this case can be disregarded during optimization.

By combining the cases, the algorithm for adaptive adjust-
ment of α can be derived (Algorithm 3). If there exists a point

(a) Intermediate waypoints ini-
tialized with linear interpolation.

(b) Optimization result of the
intermediate waypoints.

Fig. 9: Refinement process for approximate continuous col-
lision avoidance. The waypoints (green) are obtained from
Algorithm 4, and the intermediate waypoints q̃ are initialized
through linear interpolation between successive waypoints and
subsequently refined through optimization (25) to achieve a
smoother, collision-free path.

xj colliding with the current set Vk, we immediately stop the
process and increase α by a small, predefined increments ∆α
(Line 4-6). Otherwise, we calculate an α∗ that satisfies (23),
by taking the minimum value of α∗

ij , calculated from (24)
(Line 7-12).

C. Approximate Continuous Collision Avoidance using Post-
hoc Path Densification

Our formulation ensures that collision avoidance constraints
are enforced only at the discrete waypoints along the path;
however, it does not inherently guarantee collision avoid-
ance between the discrete waypoints. Ensuring continuous
collision avoidance is crucial in practice. Yet, analytically
enforcing such constraints is generally intractable. As a result,
existing methods typically approximate continuous collision
avoidance by densifying the path and performing collision
checks at interpolated waypoints during the planning process.
This approach, while widely adopted, imposes a significant
computational burden due to repeated collision detection over
many interpolated waypoints.

In contrast, our method decouples the path densification
from the planning stage, and handles it as a post-hoc refine-
ment step. This decoupling is made possible by the homotopy-
preserving property of the optimization framework, which pre-
vents deep penetration on the intermediate waypoints without
explicitly checking it in the planning process (See Fig. 5).
Consequently, instead of performing dense collision checking
during planning, we can refine each path segment in parallel,
yielding a lightweight and scalable post-processing procedure.

Specifically, consider two consecutive waypoints qi, qi+1

obtained from Algorithm 4. Between these we introduce a
set of intermediate waypoints q̃ = {q̃1, . . . , q̃nint}, to provide
a finer resolution along the path, where nint specifies the
number of interpolated waypoints between qi and qi+1. The
refinement of this intermediate waypoints can be formulated
as an optimization:

min
q̃
∥q̃1 − qi∥2 + ∥q̃nint

− qi+1∥2 +
nint−1∑
l=1

∥q̃l+1 − q̃l∥2

s.t. g(q̃) ≥ d̂
(25)
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Algorithm 4 Path Planning

1: Input: Convex decomposed obstacle Vtot
2: Construct sequence V c with Algorithm 2
3: Initialize q to be feasible in V0
4: for each sequence Vc

k in V c do
5: α← 0
6: while α < 1 do
7: Collision checks (broad+narrow, Sec. VII-A)
8: Update q by solving (17)
9: Adaptive α∗ determination (Sec. VII-B)

10: α← α∗

11: end while
12: end for
13: Path refinement for continuous collision avoidance (Sec.

VII-C)

Notably, this optimization can be performed independently
for each segment defined by consecutive waypoints. Moreover,
with the collision-free waypoints already provided, any pen-
etration of intermediate waypoints into obstacles, if present,
is minimal. Empirical evidence suggests that this limited
penetration can be effectively resolved with a single QP step
by linearizing the constraint, achieving satisfactory results. As
a result, the optimization process is computationally efficient.

The overall algorithm of solving the path planning (5)
through the subproblems (17) is outlined in Algorithm 4.
Beginning with an environment that contains only the initial
objects V0, collapsible sets Vc

k are iteratively added to the
current set Vk in the order determined by Algorithm 2. At each
addition, the interpolation variable α is adaptively adjusted
from 0 to 1, generating a series of continuously transformed
subproblems. Lastly, path refinement is performed for the
approximate continuous collision avoidance.

VIII. EVALUATIONS

We evaluate the performance of our framework using var-
ious examples. The proposed algorithm is implemented in
Julia [46], and the optimizations (17) and (25) are solved by
linearizing the collision constraints and solving the resulting
SQP using an efficient ADMM-based solver SubADMM [47].

To determine the success or failure of the planned paths
represented by waypoints, we perform a linear interpolation
between consecutive waypoints with 50 intervals and check
for penetration between the intermediate states and the en-
vironment. If none of these intermediate states penetrate the
environment, the path is considered successful. The hyperpa-
rameters used for each scenarios are detailed in Table I.

For comparison, we include baseline planners from Open
Motion Planning Library (OMPL [48]) via MoveIt2 [49]
OMPL plugin, TrajOpt using its publicly available C++ im-
plementation, and both STOMP and CHOMP through their
MoveIt2 reference implementations, and finally nonlinear pro-
gramming solver IPOPT [50]. Throughout the comparisons,
we report both success time and the total time: the total time
represents the statistical measures across all the attempts, while
the success time focuses on successful attempts only. When
the success rate is low, the mean of the total time approaches
the timeout value.

Method η d̂ d∗ ntraj

Dish placing 1.0 0.0025 -0.002 15
Tool extraction 5.0 0.015 -0.01 20

Maze navigation 3.0 0.015 -0.01 20
Humanoid 5.0 0.03 0.005 20

TABLE I: Hyperparameters (η for shaping function (15), safe
distance d̂, adaptive determination threshold d∗, and number
of waypoints ntraj) utilized in each scenario.

Fig. 10: Snapshots of path optimization process in a dish
placing scenario.

A. Placing Dishes on the Rack

Inserting a dish into a narrow gap of a drying rack is a
challenging task for a manipulator. The thinness of the rack
makes deep penetration more likely, and in such situations,
it becomes difficult to achieve a good contact feature, often
resulting in being stuck in infeasibility. For the same reason,
even achieving the feasible goal position is challenging for
this scenario.

We define the terminal cost as the distance to an approx-
imate reference pose located at the center of the rack. By
employing our proposed initialization scheme and refinement
process, feasible final position of the plate placed on the drying
rack, along with a feasible path could be achieved.

1) Ablation study: Table II compares the result of the opti-
mization with and without constraint interpolation. Without
constraint interpolation, the path planning optimization (5)
is solved using a Sequential Quadratic Programming (SQP),
where each QP is solved using SubADMM. Notably, the same
method for continuous collision avoidance, as proposed in
Sec. VII-C, is applied to ensure a fair comparison between
the approaches with and without constraint interpolation. The
tests are conducted using combinations of three different
dishes and twenty different racks. The results show that our
method significantly outperforms the one without constraint
interpolation in terms of both success rate and computation
time. This highlights the effectiveness of our approach in
optimizing goal positions and achieving successful placing
paths.

2) Comparison with baseline planners: Conventional plan-
ning methods typically require the input of a goal pose. To
compare our proposed framework with existing methods, we
used the feasible final pose obtained by our framework as the
goal position for methods other than ours. We conduct tests on
various sampling and optimization-based planners in OMPL
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Method Success Total time Success time

Proposed 55/60 1.29 ± 0.28 1.27 ± 0.28
Without interpolation 20/60 2.35 ± 0.21 2.39 ± 0.26

TABLE II: Ablation study of dish placing with and without
constraint interpolation.

Method Success Total time (s) Success time (s)

Proposed 18/20 1.47 ± 0.36 1.43 ± 0.37

RRTConnect 11/20 19.28 ± 9.87 11.95 ± 7.38
RRTstar 0/20 30.25 ± 0.38 -
BiTRRT 12/20 17.40 ± 11.88 10.32 ± 10.43
TRRT 2/20 27.08 ± 8.60 1.29 ± 0.09
BiEST 9/20 18.13 ± 9.89 7.80 ± 4.42
BMFT 3/20 27.40 ± 4.12 21.72 ± 1.05

PRMstar 0/20 31.60 ± 0.65 -
LazyPRM 0/20 30.04 ± 0.01 -
KPIECE 4/20 22.42 ± 7.69 14.36 ± 6.76

BKPIECE 4/20 22.28 ± 6.95 14.02 ± 10.55

TrajOpt 0/20 1.26 ± 0.21 -
CHOMP 2/20 22.74 ± 2.58 15.28 ± 0.03

TABLE III: Comparison with the baseline planners for the task
of dish placing, with given goal position achieved from our
framework.

using three different dish shapes and 20 racks. The timeout for
the sampling-based methods is set to 30 seconds. The results
of these tests are presented in Table III. Despite making the
problem easier for the baselines by providing the goal pose,
our method still outperformed all others in both success rate
and computation time. Particularly, TrajOpt performed poorly
in this example, failing the succeed even once. This is likely
because TrajOpt uses convex hulls for continuous collision
detection, which is inappropriate for highly non-convex shapes
like dishes.

3) Scalability comparison: Furthermore, Fig. 11 shows the
comparison of the scalability with respect to the hardness
level of the problem. For the baseline methods, we pro-
vide the goal pose computed with our method. For these
other methods, we observe that both computation time and
success rate deteriorated significantly as the hardness level
increased due to changes in sampling efficiency. In contrast,
our framework, which is based on optimization and resolves
the narrow passage problem through constraint interpolation,
maintains nearly consistent success rates and computation
times regardless of the hardness level.

4) Real world experiment: We also conduct a real-world
experiment involving the insertion of dishes, whose geometries
are provided in advance as polyderal meshes-into a drying
rack using Franka PANDA manipulator. The positions and
shapes of the wiry pokes of the drying rack were estimated
online [51]. In this procedure, sparse feature points are first
tracked across image frames, candidate edges are generated
from these points, and their probabilities are updated in a
Bayesian framework to recover the rack’s wireframe geometry.

Dishes of varying shapes were handed arbitrarily to the
robot by a person, and the grasp pose was optimized using

Fig. 11: Scalability of success rate (left) and planning time
(right) with respect to the narrowness of the gap. The failure
rate of the proposed method is omitted as it successfully
completed all tests on 20 different drying racks.

Fig. 12: Results of a successful real-world experiment using
the proposed framework for the insertion of two different
dishes.

interaction data with the ground [52]. Once the grasp pose
are available, our framework plans collision-free insertion
trajectories, with planning times of 1.23 seconds for the round
plate and 1.83 seconds for the bowl, and inserts each dish into
the slot that the user specified. This setup enables successful
placement of both tested dish shapes, as illustrated in Fig. 12.

B. Grasp-Aware Path Optimization for Object Extraction
through Gaps

Manipulating an object in a complex environment is a
challenging task for a manipulator, especially when the size
of the object is large compared to the gap of the corridors.
The success of the task may depend on both the path of the
manipulator and how it grasps the object. Existing methods
that pre-characterizes the free space in prior [24], [18] face
challenges in jointly optimizing the grasp pose and the ma-
nipulator path because the configuration of free space depends
on the grasp pose.

Specifically, we explicitly parametrize the grasp pose as a
variable ξ ∈ R2, and reformulate the optimization formulation
(5), by introducing a joint optimization variable as z = (q, ξ).
The resulting formulation is:

min
z

nq−1∑
l=1

∥ql+1 − ql∥2 + oi(qn1 , ξ) + og(qnq , ξ)

s.t. g(z) ≥ d̂

where oi(qn1
, ξ) and og(qnq

, ξ) represent the initial and goal
cost terms, respectively, defined based on the relative pose
between the gripper and the object, and g(z) encodes the colli-
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Fig. 13: Snapshots of path optimization process in various
environments.

sion avoidance constraint, accounting for both the manipulator
configuration and the grasp pose.

Fig. 13 shows the result of the optimization for various
tasks in different environments. Unlike the method in [15], our
formulation can handle more varied environments with com-
plicated connectivity among convex objects, such as mutual
connectivity involving three or more convex components (e.g.,
the middle and the bottom rows of the Fig. 13), which are not
supported under the leaf node assumption in [15]. Depending
on the configuration, it is observed that the grasp parameters
are optimized differently.

1) Comparison with baseline planners: To further compare
the performance of our framework with other planners, we
consider a simplified box extraction scenario through a gap
(the top row of the Fig. 13), where the grasp pose is fixed,
and only the path of the Franka manipulator is optimized.
The scenarios are divided into wide gaps and narrow gaps,
where the object length is fixed at 0.4 m. The gap sizes
are set to 0.38 m (wide) and 0.28 m (narrow). We introduce
slight randomness in the thickness and depth of the obstacles,
creating 30 different environments. Each planner is tested
under these conditions, with a timeout set to 200 seconds for
sampling-based methods.

As seen in Table IV, sampling-based methods achieve high
success rates in the wide gap scenario, yet remain an order
of magnitude slower than our method. In the narrow gap
scenario, the disparity widens further-except for BiTRRT [53],
all sampling-based planners record success rates below 50%.
The success rate of BiTRRT is marginally higher than ours
but incurs an average planning time approximately 22 times
longer.

While optimization-based approaches generally perform
well in wide gap and achieve comparable performance to our
framework, their success rates sharply decline in narrow gap.
This is primarily due to difficulties in optimization caused

Fig. 14: Comparison of planning performance between the
proposed framework, single-level planner (BiTRRT), and mul-
tilevel planners (QMP and QMP*) using two hierarchical
strategies: link-reduction and task-space hierarchies. Results
are shown across four scenarios with varying gap sizes.

by deep penetration issues. To compare solution quality, we
measured path length for successful cases and found that
TrajOpt yielded paths that were on average 13% shorter
than those generated by our method. This difference arises
because TrajOpt and our framework converge to different
locally optimal solutions.

2) Comparison with multilevel planners: We also compared
our result with multilevel planners, specifically the Quotient-
space Roadmap Planner (QMP) [54], and its optimal variant
QMP* [55], as well as the best-performing single-level plan-
ner, BiTRRTs. To evaluate the impact of different multilevel
abstractions, we construct two types of hierarchical decom-
positions. In the first approach, we systematically reduced the
number of links considered in the 7-DoF manipulator, defining
a three-level hierarchy: the full 7-DoF manipulator, a 5-DoF
reduced model, and a minimal 3-DoF model, progressively
omitting joints from the end-effector toward the base. In
the second approach, we structured the abstraction based on
the degrees of freedom of the manipulated tool: the full
problem (manipulator and tool), the SE(3) pose of the tool,
and the position of the tool in R3 only. We refer to these two
multilevel abstraction schemes as the link reduction hierarchy
and the task-space hierarchy, respectively. As shown in Fig.
14, multilevel planners using the link-reduction hierarchy
outperformed the single-level planner, while those using the
task-space hierarchy did not, likely due to the overhead of
inverse kinematics. Our method consistently achieved faster
and more reliable success, especially in narrow-gap scenarios.

3) Comparison on different shaping function: We evaluate
success rates by varying the parameter η in the exponential
shaping function (15) for 30 different environments. As shown
in Fig. 15 Without smoothing (i.e. η ≈ 0), the success rate was
around 0.5. This failure is largely due to inconsistencies in the
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Method Scenario 1 (Wide gap) Scenario 2 (Narrow gap)

Success Total time (s) Success time (s) Success Total time (s) Success time (s)

Proposed 30/30 1.28 ± 0.16 1.28 ± 0.16 28/30 2.11 ± 0.29 2.11 ± 0.29

RRTConnect 30/30 37.57 ± 30.78 37.57 ± 30.78 8/30 198.96 ± 79.15 103.51 ± 42.72
RRTstar 0/30 200.11 ± 0.14 - 0/30 200.25 ± 0.48 -
BiTRRT 30/30 18.89 ± 18.48 18.89 ± 18.48 29/30 50.02 ± 45.49 43.98 ± 32.34
TRRT 0/30 200.03 ± 0.00 - 0/30 200.03 ± 0.00 -
BiEST 25/30 124.52 ± 72.26 102.21 ± 51.53 2/30 196.87 ± 16.43 152.46 ± 43.99
BMFT 26/30 118.85 ± 81.58 95.47± 56.97 11/30 220.84 ± 84.17 160.98 ± 32.34

PRMstar 5/30 203.41 ± 3.49 203.58 ± 2.94 4/30 201.26 ± 1.23 202.87 ± 0.52
LazyPRM 0/30 200.08 ± 0.03 - 0/30 200.08 ± 0.03 -
KPIECE 2/30 196.46 ± 42.64 75.06 ± 41.11 0/30 197.82 ± 11.99 -

BKPIECE 25/30 132.91 ± 72.74 114.56 ± 65.31 9/30 172.93 ± 88.79 59.98 ± 31.30

TrajOpt 30/30 1.69 ± 0.18 1.69 ± 0.18 17/30 3.41 ± 1.09 2.71 ± 0.93
CHOMP 0/30 28.17 ± 0.23 - 0/30 - -

TABLE IV: Comparison with the baseline planners for the scenario of an object extraction from a narrow gap.

Fig. 15: Success rate with respect to the smoothing parameter
η in the exponential shaping function (15).

Fig. 16: Real-world execution of a planned trajectory, where
Franka successfully transports a box from a narrow gap.

contact features, particularly the contact normals, which cause
adjacent waypoints to push in opposite directions, leading to
tearing behavior. When η was increased to around 50, we
observed sharp drop in success rate. This is attributed to
a significant increase in the nonlinearity of the interpolated
collision constraint, which makes it difficult for the optimizer
to converge within a limited number of iterations.

In contrast, over the broad intermediate range from 3 to
20, the success rate remained near optimal (over 93 %), with
minimal variation. Although η is a tunable hyperparameter, it
exhibits a wide, flat optimum, indicating that the framework
is robust to the exact choice of η in a wide region.

4) Real world experiment: We demonstrate the effective-
ness of our framework on a real-world task where a 7-DoF

Fig. 17: Process of path planning of four-wheeled vehicle with
non-holonomic constraints (clock-wise).

Franka robot arm transports a long box through a narrow gap.
The gap width is 0.6 m, while the box length is 0.89 m,
making the task challenging. Assuming known dimensions and
positions of the box and surrounding obstacles, we optimized
the path using our framework. The path was computed in 3.8
seconds and was successfully executed on the real robot, as
shown in Fig. 16.

C. Navigating a Maze with Non-Holonomic Constraints
We also explore the augmentation of additional constraints.

Sampling-based path planners generally lack flexibility for
constraint augmentation [56], with methods like PRM or
RRT requiring constraint enforcement through rejection or
projection, both of which involve significant additional com-
putational effort. In contrast, optimization-based path planners,
such as our framework, offer greater flexibility in augmenting
constraints. We demonstrate this approach in path planning
in a maze environment for a vehicle with non-holonomic
constraints. We achieve it by augmenting the non-holonomic
constraint to the optimization at each subproblem (17). The
result of the optimization is illustrated in Fig. 17. Starting
from an enlarged initial environment, the path of a vehicle is
successfully optimized to navigate through the complex maze
environment.
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Fig. 18: Comparison of the success and failure results among
IPOPT, the ablation study and our framework in various non-
holonomic navigation environments.

To further demonstrate the advantages of our approach in
handling complex constraints, we compare our results with
those obtained from nonlinear optimization solvers, which
solves (5) under non-holonomic constraints. Specifically, we
compare our framework against IPOPT and an SQP-based
approach. IPOPT is an open-source nonlinear optimization
solver that employs an interior-point method. For the SQP-
based approach, the optimization is solved by iteratively
linearizing the collision constraints and solving the resulting
subproblems using SubADMM [47]. Notably, this SQP-based
approach corresponds to our framework without constraint
interpolation. The environment is randomly generated by con-
trolling parameters p1 and p2, as illustrated in Fig. 18a. The
length of the vehicle is set to 5 m.

The results are visualized in Fig. 18. Each x and y axis
indicates how the environment is varied. Among 50 trials
of random configurations, our method successfully achieved
feasible path. On the other hand, IPOPT and SQP tend to fail
as the environment complexity increases, particularly when the
initial path has deep penetration into the environment, making
it challenging to resolve infeasibility. Also, the planning time
was shorter in our framework, as can be seen in Table V.

Method Success Total time Success time

Proposed 50/50 1.40 ± 0.28 1.40 ± 0.28
Without interpolation (SQP) 19/50 2.58 ± 0.12 2.63 ± 0.096

IPOPT 4/50 3.41 ± 2.02 6.91 ± 1.90

TABLE V: Comparison of success rate and planning time
with IPOPT and ablation case in non-holonomic navigation
scenario.

Fig. 19: Optimization results of a humanoid reaching task into
the narrow gap of an office desk.

D. Humanoid Path Planning Under a Desk
To demonstrate the applicability of our method to a broader

range of systems, we present a proof-of-concept for humanoid
path planning, where the task is to reach a target located
under an office desk. While humanoid path planning typically
requires kinodynamic constraints, we perform kinematic path
planning with approximate support polygon constraint by
enforcing the center of mass of the torso to remain within
an AABB approximation of the support polygon.

The humanoid is modeled as a Unitree G1, with a drawer
attached to the desk that further narrows the feasible space.
To better navigate the constrained environment, the right
foot placement was jointly optimized. We evaluate under
ten different desk configurations. The average planning time
was 27.09 seconds, and successful plans were generated for
all cases, as shown in Fig. 19. Despite the absence of full
constraints, we were able to generate plausible paths through
kinematic planning alone. In comparison, the ablation study
without constraint interpolation succeeded in only one out of
ten configurations, and took a higher average planning time of
32.77 seconds.

E. Path Variability from Different Sequence of Object Addi-
tions

Our formulation introduces a sequence of convex object
additions during the homotopy process, and as discussed in
Sec. VI-B, this sequence is non-unique. Different sequences
of object addition results different transformations of colli-
sion constraints, which guide the optimization toward distinct
locally optimal solutions. For instance, in scenarios where
the robot can avoid an obstacle by moving to the left, right,
or above, the choice of object addition order can guide the
optimization toward different paths. An illustrative example is
shown in Fig. 20, where multiple different paths are obtained
depending on the sequence. While conventional optimization-
based path planning methods typically converge to a single
locally optimal path, our approach enables diverse exploration
by leveraging the non-uniqueness of the homotopy deforma-
tion.

IX. DISCUSSIONS AND LIMITATIONS

We propose a path planning framework specifically de-
signed to address the challenges posed by narrow passages.
The framework leverages HOM using collision constraints
interpolation, ensuring feasibility while maintaining the homo-
topy equivalence of the free space. By progressively introduc-
ing convex objects and interpolating constraints, the method
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Fig. 20: Results of multiple locally optimal paths obtained
from different sequence of additions.

effectively guides the solution toward the goal even in complex
environments.

The runtime of our algorithm comprises two primary com-
ponents. First, the homotopy deformation proceeds over mul-
tiple times, where the number reflects the topological com-
plexity of the environment. In highly intricate environment,
this interpolation may require a large number of homotopy
steps. In the worst case, maintaining topological equivalence
throughout the deformation may be infeasible, which repre-
sents a limitation of our approach. The second component is
the optimization at each subproblem, which we solve via SQP
with SubADMM: its per-iteration cost grows nearly linearly in
the dimensionality. Therefore, our method exhibits near-linear
scaling as the dimensionality of the state space increases.

We would like to address some other limitations of our
framework. Firstly, our framework introduces computational
overheads such as convex decomposition and environment
complex constructions. Moreover, the framework solves the
problem by iteratively generating and addressing subproblems,
which inherently increases computational time. While our
approach is highly efficient for the challenging narrow passage
scenarios discussed in this paper, it can be less efficient
compared to existing methods for broader passage scenarios,
where faster solutions are readily achievable without such
overhead.

Also, our algorithm cannot guarantee probabilistic com-
pleteness. However, our framework can also be viewed as a
methodology for effectively generating collision-free samples
for a sampling-based planner. From this perspective, in future
work we intend to combine our interpolation module with
sampling to guarantee probabilistic completeness.

Furthermore, since the convex objects can only be added
under specific conditions, our framework works most effec-
tively when obstacles are represented as convex objects form-
ing relatively simple topologies. In real-world environments,
however, nonconvex structures may require complex convex
decompositions involving a large number of convex objects,
making the representation and path planning more demanding.
Moreover, environments reconstructed from sensory data are
often incomplete or noisy, which can lead to inaccurate
or unnecessarily complex topological structures and further
complicate the application of our framework. Nonetheless,
such difficulties can be partially mitigated through human
intervention during environment construction, such as by ap-
proximating nonconvex with a single convex hull to balance
representational fidelity and computational tractability, or by
manually correcting missing or inconsistent regions in sesory

data.
Due to the optimization-based nature of our methodology,

there remains the issue of potentially getting stuck in lo-
cal minima. Also, the sequence of the object addition can
influence the specific local minima encountered. However,
our framework holds significance in that it increases the
likelihood of finding feasible solutions compared to existing
optimization-based path planning methods without the pro-
posed framework.
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APPENDIX A
SUPPORTING LEMMA

Lemma 1. If and only if v̂ dominates v in a complex K,
following relation satisfies:

st(v,K) ⊆ st(v̂, K)

Proof. We will prove the statement by demonstrating both
directions of equivalence.

1) lk(v,K) = v̂L ⇒ st(v,K) ⊆ st(v̂,K): Assume that
lk(v,K) = v̂L. Then, we have:

st(v,K) = vlk(v,K) = vv̂L = v̂L̂

where L̂ := vL. Therefore, st(v,K) is dominated by v̂. Then,
for an arbitrary face σ ∈ st(v,K), following holds:

σ ∪ {v̂} ∈ st(v,K) ⊆ K

which indicates that σ ∈ st(v̂, K). Thus, st(v,K) ⊆ st(v̂, K)
is satisfied.

2) lk(v,K) = v̂L ⇐ st(v,K) ⊆ st(v̂,K): Assume that
st(v,K) ⊆ st(v̂, K) holds. Consider an arbitrary face σ that
satisfies σ ∈ lk(v,K). From the definition of link,

σ ∈ st(v,K), v /∈ σ

By considering τ = σ ∪ {v}, it follows that τ ∈ st(v,K).
From our assumption,

τ ∈ st(v̂,K)

⇒ τ ∪ {v̂} ∈ K

⇒ σ ∪ {v̂} ∪ {v} ∈ K

⇒ σ ∪ {v̂} ∈ st(v,K)
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Additionally, since v /∈ σ ∪ {v̂}, we have σ ∪ {v̂} ∈ lk(v,K).
Hence, we can deduce that lk(v,K) = v̂L is satisfied.

APPENDIX B
PROOF OF PROPOSITION. 2

We provide the proof of Proposition 2.

Proof. As x lies on the surface of each interpolated object,
we have

(1− αl)s1 + αls2 = 0

(1− αs)f(s1) + αsf(s2) = 0

Using these conditions and (14), γ can be rewritten as:

γlinear =
αl

1− αl
= −s1

s2

γshaped =
αs

1− αs

f ′(s2)

f ′(s1)
= −f(s1)f

′(s2)

f(s2)f ′(s1)

By applying the convexity of f and f(0) = 0 as stated in
Property 1, we have:

0 ≥ f(s) + f ′(s)(0− s)

for any s ∈ R. Using this in equality, we have:

γlinear − γshaped =
f(s1)f

′(s2)

f(s2)f ′(s1)
− s1

s2

=
s1f

′(s2)

f(s2)︸ ︷︷ ︸
≤0

 f(s1)

s1f ′(s1)︸ ︷︷ ︸
≤1

− f(s2)

s2f ′(s2)︸ ︷︷ ︸
≥1


≥ 0

since f ′(s1), f
′(s2) > 0, f(s1) > 0, f(s2) < 0 from the

property of the shaping function and the fact that s1 > 0 and
s2 < 0. As a result, γlinear ≥ γshaped is satisfied.

APPENDIX C
PROOF OF THEOREM 2

We provide the proof of Theorem 2. We begin with a
technical lemma that will be used in the proof.

Lemma 2. Assume a vertex vi /∈ V , which is dominated by
v̂i ∈ V in N(V ∪ {vi}). If vαi := vv̂i→vi

(α) ∩ vi, then vαi is
dominated by v̂i in environment complex K ′ := N(V ∪{vαi }),
i.e.:

st(vαi ,K
′) ⊆ st(v̂i,K ′)

Proof. Consider an arbitrary face σ ∈ st(vαi ,K
′). From

Proposition 1, we have:

Oσ ∩ vαi ̸= ∅ ⇒ Oσ ∩ vi ̸= ∅ (26)

1) Case 1: If vαi /∈ σ, following is satisfied from Lemma 1
(Appendix A):

σ ∈ st(vi,K) ⊆ st(v̂i,K) ⊆ st(v̂i,K ′)

where K := N(V).

2) Case 2: Otherwise, if vαi ∈ σ, then let τ := σ \ {vαi },
then Oτ ∩ vi ̸= ∅ holds from (26).

τ ∈ st(vi,K)

⇒{vi} ∪ τ ∈ st(vi,K) ⊆ st(v̂i,K ′)

⇒Oτ ∩ vi ∩ v̂i ̸= ∅

from Lemma 1 (Appendix A). Then, from Proposition 1,

Oτ ∩ vαi ∩ v̂i = Oτ ∩ vi ∩ v̂i ̸= ∅
⇒σ ∈ st(v̂i,K ′)

Therefore, st(vαi ,K
′) ⊆ st(v̂i,K ′) is satisfied.

We now proceed the proof of Theorem 3.

Proof. Geometrically, the occupied space of sdVk→Vk+1
(·, α)

can be interpreted as the gluing of interpolated objects into Vk
as:

O
(
sdVk→Vk+1

(·, α)
)
= OVk

∪
nc⋃
i=1

vvσ(i)→vc
i
(α) (27)

= OVk
∪

nc⋃
i=1

(
vvσ(i)→vc

i
(α) ∩ (vσ(i) ∪ vci )

)
(28)

= OVk
∪

nc⋃
i=1

(
(vvσ(i)→vc

i
(α) ∩ vσ(i))︸ ︷︷ ︸

⊆vσ(i)⊆OVk

∪ (vvσ(i)→vc
i
(α) ∩ vci )︸ ︷︷ ︸

:=vα
i

)

= OVk
∪

nc⋃
i=1

vαi

where vαi := vvσ(i)→vc
i
(α)∩ vci is a convex object since inter-

section between two convex objects is convex. The equation
(27) can be derived from (2), and the transformation (28) is
derived from the property (9), i.e., vvσ(i)→vc

i
(α) ⊆ vσ(i) ∪ vci .

For arbitrary i = 1, . . . , nc, let K1:i := N(Vk ∪
{vα1 , . . . , vαi }). From the distinctness of Vc

k from the definition
of collapsible set, vαi not intersect any other vαj for arbitrary
j ̸= i:

vαi ∩ vαj ⊆ vci ∩ vcj = ∅, i ̸= j

It follows that vαj /∈ st(vαi ,K1:i). This implies

st(vαi ,K1:i) = st(vαi ,Ki) ⊆ st(vσ(i),Ki) ⊆ st(vσ(i),K1:i)

from Lemma 2. Therefore, each vαi is dominated by vσ(i) in
K1:i, therefore K1:i and K1:i − vαi are homotopy equivalent:

K1:i ≃ K1:i−1

By collapsing each vαi in K1:i, we obtain the sequence of
homotopy equivalences:

K1:nc ≃ K1:nc−1 ≃ . . . ≃ N(Vk)

Therefore, independent of α, the occupied space of the inter-
polation defined by (16) is homotopic to Vk, implying that the
interpolation process preserves homotopy.

APPENDIX D
PROOF OF THEOREM 3

The following provides the proof of Theorem 3.

Proof. Let us denote K ↘ L when a complex K can
be transformed into another complex L through a sequence
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of steps, each eliminating a single dominated vertex, while
preserving homotopy equivalence.

Firstly, we aim to show that eliminating a collapsible set
Vc = {vc1, · · · , vcnc

} of a simplicial complex K from K
satisfies K ↘ K − Vc. Assume each vci ∈ Vc is dominated
by vσ(i) ∈ V . Let K ′ := K − vc1. After removing vc1, the
following condition is satisfied:

st(vcj ,K
′) ⊆ st(vσ(j),K

′)

for all j = 2, . . . , nc. This implies that Vc \ {vc1} is again
a collapsible set of K ′. By repeating this process, we can
iteratively remove all vertices in Vc, yielding:

K ↘ K − vc1 ↘ · · · ↘ K − Vc (29)

Let K0 denote the remaining complex after eliminating all
possible collapsible sets from K. By iteratively applying the
same process (29), we have K ↘ K0. As shown in [39], K0

is unique. Therefore, the number of vertices after eliminating
all possible collapsible set is uniquely determined.

APPENDIX E
PROOF OF THM. 4

We include here the detailed proof of Theorem 4.

Proof. Let SDF of a point x ∈ R3 to v1 and v2 as s1 :=
sdv1(x) and s2 := sdv2(x). Also, hv1(x) and hv2(x) be the
corresponding support functions of v1 and v2 respectively.
Then SDF functions (i.e. si(x), i = 1, 2) can be expressed
with the support functions as [57]:

si(x) = sup
∥y∥=1

(yTx− hvi(y)), i = 1, 2

From the Property 1, following is satisfied:

f(si(x)) = f

(
sup

∥y∥=1

(yTx− hvi(y))

)
= sup

∥y∥=1

f
(
yTx− hvi(y)

)
Assume x ∈ vv1→v2

(α). Then, following equations hold:

0 ≥(1− α)f (s1(x)) + αf (s2(x))

=(1− α) sup
∥y∥=1

f(yTx− hv1(y)) + α sup
∥y∥=1

f(yTx− hv2(y))

≥ sup
∥y∥=1

{
(1− α)f(yTx− hv1(y)) + αf(yTx− hv2(y))

}
≥ sup

∥y∥=1

{
f
(
(1− α)(yTx− hv1(y)) + α(yTx− hv2

(y))
)}

≥ sup
∥y∥=1

{
f
(
yTx− ((1− α)hv1(y) + αhv2(y))

)}
This leads to the inequality for all ∥y∥ = 1:

f
(
yTx− ((1− α)hv1(y) + αhv2(y))

)
≤ 0

⇒ yTx ≤ hv1→v2(y, α) (30)

As the left and right term are both linear to y, (30) is
satisfied for all y ∈ R3, therefore the point x lies within
the space represented by the interpolated support function
(20). Consequently, the space represented by interpolated SDF
is a subset of the space represented by interpolated support
function.
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