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Variations of Augmented Lagrangian for Robotic
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Abstract—The multicontact nonlinear complementarity prob-
lem (NCP) is a naturally arising challenge in robotic simulations.
Achieving high performance in terms of both accuracy and effi-
ciency remains a significant challenge, particularly in scenarios
involving intensive contacts and stiff interactions. In this article,
we introduce a new class of multicontact NCP solvers based on
the theory of the augmented Lagrangian (AL). We detail how the
standard derivation of AL in convex optimization can be adapted to
handle multicontact NCP through the iteration of surrogate prob-
lem solutions and the subsequent update of primal-dual variables.
Specifically, we present two tailored variations of AL for robotic
simulations: the cascaded Newton-based augmented Lagrangian
(CANAL) and the subsystem-based alternating direction method
of multipliers (SubADMM). We demonstrate how CANAL can
manage multicontact NCP in an accurate and robust manner, while
SubADMM offers superior computational speed, scalability, and
parallelizability for high degrees-of-freedom multibody systems
with numerous contacts. Qur results showcase the effectiveness
of the proposed solver framework, illustrating its advantages in
various robotic manipulation scenarios.

Index Terms—Contact modeling, dexterous

manipulation, simulation and animation.

dynamics,

I. INTRODUCTION

hysics simulation is a fundamental tool for the develop-

ment of robotic intelligence, as it enables scalable data
acquisition, training, and safe testing of various algorithms and
designs. Moreover, simulations can be directly employed to
solve modeled system dynamics, proving invaluable for a range
of applications such as global planning, trajectory optimization,
and parameter estimation. This significance has led to the devel-
opment of diverse open-source platforms [1], [2], [3], [4], [5],
[6], which are increasingly being utilized in various research
endeavors.
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An essential focus in robotic simulation research revolves
around achieving results that are both accurate and efficient in
terms of memory and computation time. This presents a compre-
hensive and challenging problem, encompassing diverse consid-
erations such as discrete-time integration, defining various ge-
ometric/physical constraints, incorporating friction, managing
system-induced sparsity, and selecting numerical algorithms.
Among these factors, multicontact plays a crucial role in mim-
icking interactions between objects. A prevalent velocity-level
modeling of such constraints [7] naturally induces a nonlinear
complementarity problem (NCP), which is generally challeng-
ing to solve.

Typically, contact solvers for physics simulations must bal-
ance three crucial factors: efficiency, accuracy, and robustness.
However, finding a universal solution remains challenging.
Methods developed for graphics and game engines tend to
prioritize efficiency and robustness, aiming to deliver visually
plausible results, even if early termination occurs. However, they
are known to converge slowly and may struggle with achieving
highly accurate solutions. They frequently encounter difficulties
in handling intensive contact interactions (i.e., where constraints
are dense and numerous relative to the system degrees of free-
dom), which is common in robotic manipulation. Conversely,
achieving a highly accurate solution for NCP often involves
complex matrix operations and numerically sensitive processes,
which generally lack efficiency and robustness for practical
robotic applications. Moreover, some approaches aim to enhance
efficiency and robustness by relaxing the contact constraints
and exploiting them during the solving stage. However, such
relaxations can be challenging to physically interpret, and the
solutions they produce may exhibit undesirable physical behav-
iors.

In this article, we introduce a new series of multicontact
solvers for robotic simulation based on the theory of augmented
Lagrangian (AL). We demonstrate how the variations of AL can
address the multicontact NCP for robotic simulations, by itera-
tively solving surrogate problems, thereby enabling the proximal
solution converges in a stable and robust manner. Specifically,
we present two algorithms that are practically applicable to
robotic simulation: the cascaded Newton-based augmented La-
grangian method (CANAL) and the subsystem-based alternating
direction method of multipliers (SubADMM). We explain how
these two variations are advantageous in scenarios requiring
precise management of high-density intensive contact and par-
allelized, scalable handling of high degree of freedom (DOF)
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TABLE I
COMPARISON OF CONTACT MODELS AND SOLVERS USED IN POPULAR ROBOTIC
SIMULATORS

‘ ‘ Bullet ‘ MuJoCo | DART ‘ PhysX ‘ Drake ‘ ODE ‘

Model LCP Convex LCP NCP Convex LCP
Sol Direct N%th;on Direct PGS Newt Direct
OWer | pGs PGS PGS | TGS ewton | pgs

multibody contact, respectively. Several robotic simulations,
particularly those involving challenging multicontact scenarios,
are implemented and demonstrated to validate our framework.

The rest of this article is organized as follows. In Section II, we
review the development and utilization of multicontact solvers
in robotic applications and beyond. Section III provides essen-
tial background materials necessary to present our AL-based
multicontact solver. Then, Section IV presents our core theories
and structures for the AL-based multicontact solver. This leads
to Section V, which outlines the first practical variation as the
cascaded Newton-based AL, and Section VI, which introduces
the other variation: subsystem-based ADMM. Section VII il-
lustrates the implementation results of our solver in physics
simulation and evaluates its performance under various robotic
manipulation scenarios. Finally, Section VIII concludes this
article with discussions and remarks.

II. RELATED WORKS

In this section, we summarize the multicontact modeling and
solver algorithms that have been utilized in robotic simulation.
See also Table I for the comparison of widely used simulators
in robotics.

A. Direct Method

The conventional approach to handling dynamics equations
with multicontact constraints involves formulating the equations
as a linear complementarity problem (LCP) [8], then applying
Lemke’s algorithms [9] or Dantzig’s pivoting algorithms. While
these direct methods can guarantee accuracy, they often suffer
from high-computational complexity. Moreover, the LCP-based
formulation necessitates polygonal friction cone approximation,
leading to undesirable error in friction behavior. In robotic sim-
ulation software, DART [10], ODE [11], and Bullet [1] provide
implementations of Dantzig’s method to solve the LCP problem.

B. Per-Contact Iteration

More widely used in recent years are iterative methods, which
typically involve locally performing an impulse projection step
to achieve global equilibrium. One of the most popular itera-
tion schemes is projected Gauss—Seidel (PGS), which has been
extensively developed and adopted in the game and graphics
community [12], [13] as well as in robotics [14], [15]. These
methods are known for being simple, robust, and advantageous
in generating visually plausible results. However, they often
experience slow convergence and limited efficiency, especially
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when the constraints are highly coupled. These weaknesses are
particularly emphasized in robotic simulation, as the generalized
coordinate representation (e.g., robot joint angles) is common,
and overspecified contact (i.e., system DOF < constraint DOF)
is prevalent in manipulation tasks. Several research efforts have
aimed to enhance the performance of impulse iteration methods.
In [16], the bisection method is presented as a potential replace-
ment for the local projection scheme in PGS, demonstrating its
effectiveness in quadruped locomotion simulation. In addition,
a substepping variant of PGS, named temporal Gauss—Seidel
(TGS), is introduced in [17], showing its better convergence
in various situations. Unlike direct methods, iterative methods
can be applied to various types of problem modeling, including
LCP, cone complementarity problems, NCPs, and also their
position-based dynamics variants [18]. As a result, they are
employed in a wide range of simulation software, including
Bullet [1], MuJoCo [2], RaiSim [5], and Isaac Sim [19].

C. Nonlinear Equation Solver

Another approach to dealing with multicontact simulation is
to express all required relations in nonlinear equation form and
solve them using gradient descent iteration. Implicit penalty-
based contact, often referred to as regularized contact, exhibits
the most natural connection to this approach, as demonstrated
in [20] and [21]. However, penalty methods have well-known
weaknesses that they often necessitate parameter tuning to
achieve plausible results, and high penalty gains can lead to
numerical issues. For the other direction, Howell et al. [22] con-
structed and solved a nonlinear equation with complementarity
smoothing, and Macklin et al. [23] derived a nonsmooth equation
using the complementarity function (e.g., Fischer—Burmeister).
While these methods typically exhibit superlinear convergence,
the intricate nature of contact conditions frequently leads to lack
of robustness or challenges in line search. Addressing this issue,
the Newton-based techniques [24] and conjugate gradient (CG)
algorithm for regularized convex contact models aim to ensure
algorithmic robustness, albeit at the potential expense of physi-
cal accuracy. Among current simulation software, MuJoCo and
Drake [25] are incorporating nonlinear equation-based solvers.

D. Augmented Lagrangian

Proximal algorithms, which were possibly pioneered by
Moreau [26] comprise a class of methods designed to address
constrained convex optimization problems by sequentially solv-
ing a series of subproblems. The AL method can be viewed as a
class of proximal algorithm [27], as it formulates subproblems
using the method of multipliers and a penalty term. Typically,
the subproblems are addressed through simpler solutions or tai-
lored designs, which has spurred the development of numerous
open-source libraries that implement these strategies, thereby
facilitating broader access to robust optimization tools. Notable
examples include libraries for quadratic programming, such
as OSQP [28] and QPALM [29], and for cone programming,
such as SCS [30]. In robotics, proximal algorithms have been
effectively utilized to address constraints within computational
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structures, notably in applications such as factor graph optimiza-
tion [31] and differentiable dynamics programming [32]. The
utility in solving robot dynamics with equality constraints is
presented in [33].

E. Comparison With Previous Work

Portions of the algorithm outlined in this article were pre-
sented in our previous work [34], applying the idea of lever-
aging ADMM in physics simulations to achieve effective par-
allelization. In this article, we significantly extend this scope
by establishing general theory and introducing two practical
variations of the AL method tailored for robotic multicontact
simulations. These two variations include the newly proposed
CANAL algorithm and an advanced version of the SubADMM
approach initially introduced in [34]. We describe how the two
variations are characterized and discuss the situations in which
each might be more advantageous. Compared to the original
SubADMM in [34], we develop a new subsystem-based Ja-
cobian reformulation technique, enabling the factorization of
submatrices arising during alternating resolution steps to be
performed more efficiently by exploiting the articulated tree
structure. This improves scalability with respect to the DOF
of each subsystem. Furthermore, we present a variety of new
manipulation examples characterized by intensive and complex
contact formations to demonstrate the effectiveness of the pro-
posed methods.

III. PRELIMINARY

A. Discretized Dynamics

We consider following continuous-time equations of motion:

M(q)i=T(q,q)+ J(a)" f (1

where ¢ € R" is the generalized coordinate variable of system,
M(q) € R™™ is the system mass matrix, 7(¢,¢) € R™ is the
generalized force (including Coriolis/gravitational force, exter-
nal input, etc.), and f € R, J(q) € R™*™ are the constraint
force and Jacobian with n, n. being the system/constraint di-
mension. In typical robotic simulation, the discretized version
of (1) is employed as follows:

My (vps1 — vg) = Titr + Ji Ay
O = v + (1 — 0)vga
qk+1 — update(qk7 ﬁkv tk) (2)

where k denotes the time step index, ¢ is the step size, vy is
the generalized velocity, and the A is the constraint impulse
at the kth step. In this work, we primarily integrate explicit
and implicit schemes. Specifically, we utilize M}, = M(qy,) and
T = 7(qk,vi), while employing the representative mid-step
velocity U, € R™ for state updates and constraint handling.
Here, 6 € [0, 1] determines the precise integration rule, while
its impact on physical behavior is discussed in [35]. From now
on, time step index k will be omitted for simplicity but note that
all components are still time(step)-varying.
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B. Constraint Models

Throughout this article, we classify the constraints on the
multibody system into three categories: soft, hard, and contact
constraints. Similar to many other simulators [1], [2], [5], the
constraint model can be formulated by relation between the
velocity © to the impulse A. Such velocity-impulse modeling
has advantages in terms of the well-definedness of the problem
(c.f., the Painleve paradox [36]) and can naturally express be-
haviors such as friction or elastic collisions. However, it may
exhibit position-level drift, as it is based on linearization on
the constraints. Positional drift can be suppressed by adopting
techniques such as multiple linearization, as in [37], or relin-
earization [38], during the solution process. These methods may
be considered for future implementation.

1) Hard Constraint: Hard constraints ensure that equations
and inequalities for the system are strictly satisfied (e.g., joint
limit), including holonomic and nonholonomic types. If the ¢th
constraint is hard, the corresponding relation is as follows:

OS)LZ'LJZ‘@—F@Z‘ZO (3)

where ¢; € R and J; € R™" denote the error and Jacobian for
hard constraint. Here, the term e; is determined from ¢ and v by
scaling the constraint space violation and its rate, using methods
such as Baumgarte stabilization [39], to effectively prevent
constraint drift. Note that, as it is based on the complementarity
condition, (3) does not allow any compliance.

2) Soft Constraint: Soft constraints are typically originated
from the elastic potential energy of the system (e.g., spring). If
the ith constraint is soft, constraint impulse can be written as
follows:

)Li = —k:iei — szﬂA} (4)

where e; € R and .J; € R are the error and Jacobian for soft
constraint, k;, b; > 0 are the gain and damping parameter, which
are scaled and biased dependent on the time integration scheme,
step size, and constraint-space damping. The values of k; and
b; are associated with the system energy behavior, see [35] and
[40] for more details.

3) Contact Constraint: Contact condition is typically the
most demanding type since it includes nonlinear complementar-
ity relation between primal (i.e., velocity) and dual (i.e., impulse)
variables. In this article, we assume that at each time step, set of
contact features (i.e., gap, contact point, normal) are provided
from collision detection module [41], [42]. Then for each contact
point, we define Signorini-Coulomb condition (SCC), which is
the most universal expression for dry frictional contact. If the
tth constraint is contact, the corresponding 3-DOF relation is as
follows:

0 < )\i,n L Jz,n@ + €in > 0
0<0; L piri — ||Asell >0
Oiie + pikinJi 0 =0 5

where | denotes complementarity, ¢; , € R, and J; ,, € R1xm
denotes the error and Jacobian for contact normal, J; ; € R2xn
is the Jacobian for contact tangential, and y; is the friction
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Fig. 1. Snapshots of a robotic simulation using our multicontact solver. Top:
Bolt-nut assembly. Bottom: dish piling. Although intensive contact formation
and stiff interactions make these scenarios challenging to simulate, our solvers
successfully complete the simulations less than a ms of time budget per step.

A

|

stick slip

>
>

open

Fig. 2. Three cases resulting from the SCC, ranging from open (4; , = 0),
stick (A4, > 0,9; = 0), to slip (A3, > 0,8; > 0), shown from left to right.
The blue shape illustrates the friction cone, the green arrow indicates the contact
frame velocity, and the yellow arrow represents the contact impulse.

coefficient and ¢; = ||.J; ;0| is the slipping velocity. The first
condition, known as the velocity-level Signorini condition, cap-
tures the complementarity nature of the contact occurrence and
gap. The remaining conditions involve the complementarity
between slipping velocity and the friction cone boundary, with
the maximal dissipation law indicating that slip opposes the
direction of impulse. There are three situations induced by the
condition (5)—open, stick, and slip, as depicted in Fig. 2.

C. AL Method

By standard, AL method [43] is a class of algorithms to
solve general constrained optimization problems. As a specific
instance, it can be applied to the following problem:

min f(z) + g(z) st. Pr+Qz=r.
Here, the AL is defined as follows:
L= @)+ () + " (Pr+Qz 1)+ D[ Pa @z — 1

where v is the Lagrange multiplier and 3 > 0 is the penalty
weight. Then, AL method takes the iteration step as follows:

(.’L‘l+1 Zl+1

) = arg min £(z, z, u')
T,z

utt =l 4 B(P2 £ QY — 1) (6)

)
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where [ is the iteration index. In (6), (x,z) are coupled for
minimization problem at each step. Meanwhile, ADMM [44]
iteratively performs alternating minimization of £ with respect
to each variable. The iteration process of ADMM can be sum-
marized as follows:

2 = arg min £(z, 2', ul)
2 = arg min £(2') 2, u)
u = ol + B(Pr T+ QT — 1) )

where [ is the loop index. By independently resolving each
variable, ADMM is often employed to enhance the efficiency
and scalability of the application [44], [45]. In this work, we
develop separate tailored algorithms based on the styles of (6)
and (7).

IV. MULTICONTACT SIMULATION VIA AL
A. Problem Formulation

The motivation for leveraging AL in contact simulation pri-
marily stems from the insight to integrate tools from constrained
optimization into the solving of constrained dynamics equation.
The problem considered in this article, can be essentially for-
mulated as follows:

Solve A6 = b+ JTA
s.t. (Jo,A) €S. @)

where A € R™*™ b € R"™ are the dynamics matrix/vector com-
pressed from (2), and S, represents the set that satisfies the
relation between Jv and A described in (3), (4), and (5). In
robotic manipulation scenarios, contact points are often gener-
ated numerously and densely, which can lead to the resulting
problem being illconditioned or infeasibly defined. In such
cases, performing per-contact iteration based on the dual con-
version JA~!J7 (i.e., so-called Delassus operator) often proves
inefficient and exhibits slow convergence. Meanwhile, AL in
optimization is known for maintaining subproblem feasibil-
ity and demonstrating robust convergence, even converging to
solutions with the least constraint violation in poorly defined
problems [46].

Consequently, our primary objective is to investigate whether
the advantages of the AL approach can be effectively applied to
contact simulation. Although the problem (8) shares commonali-
ties with standard optimization formulations, associated relation
between primal and dual variables diverges due to the contact
conditions (5). Unlike the complementarity conditions arising
from convex inequality constraints, the contact complementarity
is intrinsically nonmonotone and nonconvex, posing additional
challenges in solution existence and numerical robustness. Our
aim is to establish a foundation for deriving AL techniques
specifically tailored to multicontact, thereby addressing the
unique challenges posed in robotic simulation.
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B. AL for Multicontact NCP

We start by interpreting the problem (8), as imposing con-
straints on the dynamics expressed as Ao = b. In its integrable
form, this can be written as follows:

1
f(®) = ?TA@ —v"0.
Also for AL on the dynamics, we equivalently express con-
straints in (8) as follows:

(2,)) € 8., Jb =z ©)

where z € R serves as the slack variable for the constraint
interface. Based on these, we define the AL for the dynamics as
follows:

L= %ATAﬁ — T+ T (T —2) + gHJﬁ —z|> (10

where z € R™ serves as the slack variable for the constraint
interface. By differentiating the AL (10) with respect to ¥ and
z, we obtain the following dynamics:

(A+BJ D)o =b+ IV (B2 —u)

Bz = BJo +u+ . (11)

The above dynamics (11) with (z,1) € S, can be physically
interpreted as introducing a potential energy action between
z and Jov while imposing constraints on z, which effectively
relaxes the original problem. Finally, recalling the structure of
AL for the optimization problem (6), we can similarly solve (8)
as following iteration structure:

A+BJTT 5JT] H b— JTu
Solve =
—BJ 61 z u—+ A
s.t. (z,1) € S (12)
u <+ u+ B(Jo— z). (13)

The rationale of the above structure is that, at the fixed-point
of the iteration (therefore, Jo = z), the result satisfies both
dynamics equation and constraint relation. Similar to (6), the
process can be interpreted as iterating between solving the
problem relaxed via a penalty term and updating the Lagrange
multipliers. We refer this relaxed problem (12) as the surrogate
problem. However, unlike the minimization problem in (6), the
solvability of the surrogate problem remains unclear, which may
raise potential concerns. We address this issue in the following
proposition.

Proposition 1: Surrogate problem (12) always has a feasible
solution.

Proof: We provide a proof based on the existence result
established in [36], which relies on the Brouwer fixed-point
theorem. Specifically, the theorem guarantees the existence of
a solution to the Coulomb friction problem when the contact
Jacobian has full row rank (i.e., its rows are linearly indepen-
dent). In the surrogate problem (12), the introduction of the slack
variable z effectively decouples the contact constraints, making
the modified contact Jacobian equivalent to an identity matrix.
Since the identity matrix trivially satisfies the full row rank
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condition, the conditions required for applying the existence
theorem are met. Therefore, the surrogate problem (12) always
admits at least one feasible solution.ll

Given that the surrogate problem (12) has a feasible solution,
the numerical scheme used to find this solution becomes signifi-
cant as its performance directly affects the overall efficiency and
accuracy of the AL methods for multicontact NCP.

C. Closed-Form Formulation of Slack Variables

Compared to the original problem (8), the surrogate problem
(12) should be easier to solve in order to maintain the rationality
of the framework. A crucial difference between (8) and (12) is
that the constraint condition is defined on the slack variable z as
shown below:

Bz=BJo+u+h, st (z,4)€S.. (14)

This implies that the relationship between z and A is matrix-free
and involves only a simple scalar weight 5. Based on this feature,
we can derive the closed-form representation for A (therefore,
also for z) with respect to ¢ for each hard, soft, and contact
constraint. The derivations are listed as below.

If the ith constraint is hard, (z;, A;) should satisfy the follow-
ing condition as in (3):

0<A; Lz+e >0.

Then, we can determine A; by substituting (14) into the above
complementarity relation as follows:

ri =g (B0 — u; — Be;) (15)

where II-( denotes the projection on positive set. Meanwhile
if the ith constraint is soft, (z;, A;) should satisfy the following
condition as in (4):

)"i = —kiei — bzzz

Then, we can determine A; by substituting (14) into the above
linear relation as follows:

bi(BJi0 + u;) + Bkie;
- bi + 0 '
Finally, if the ith constraint represents a contact, (z;, A;) should

satisfy the contact condition described in (5). In this case, we
can determine A; as follows:

Ay = Hé‘ri“ (=BJi0 — u; — Pe;)

hi = (16)

a7)
where Il denotes the projection onto the friction cone C.

Specifically, the projection A; = IL (A7) is carried out by the
following steps:

Ain = max(A; ,,0)

Li = Hew, ) (A7)

Here, C(X; ,,) represents the cross-section of C where the plane
at height A;, intersects the cone. This nested projection is
distinct from the closest distance projection, commonly known
as the proximal operator when applied to the indicator function

(18)
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N
7~ 7
Fig. 3.  Comparison of the strict operator (left) and the proximal operator

(right) for the friction cone projection. Black dot: operator input; red arrow:
projection direction.

of the friction cone [27]. As in [47], we refer to (18) as the
strict operator. See Fig. 3 for illustrations of each projection
scheme. The derivation in (17) and (18) can be justified by
showing that the resulting pair (z;, A;) strictly satisfies the SCC,
as demonstrated in the proposition below.

Proposition 2: 1If the ith constraint represents a contact, (17)
with (18) gives the unique solution of (14).

Proof: As the normal component is completely decoupled
from the tangential component in (14), it can be written as
follows:

B(Zi,n + ei,n) = )\i,n + Bji,n{) + Ujn + Bei,n

= )\i,n — Al

,n"

Then, if A7, >0, A;, = A;,, is the only solution for which
Zin + €in = 01s satisfied. Otherwise, if A; , = 0, it is the only
solution since z;,, + €; , > 0. Therefore, the normal compo-
nents are uniquely determined, satisfying the complementarity
condition. For the tangential components, the relation can be
written as follows:

Bziy = hiy
Substituting the above equation into (5), we obtain
(BO; + pikin) iy = phikinh -

If %; ¢ liesinside C(A; ), ttAin — ||Ai,¢]| > Oholds and ; should
be 0. If &;, lies outside C(A;,), d; should be larger than
0, yet should satisfy ;. = ||A;¢||, therefore, it is uniquely
determined. Finally, the resulting A; ; is equivalent to the result
of the strict operator, thus the statement holds.ll

The results (15), (16), and (17) derived above imply that X;
can be expressed as a closed-form regardless of constraint type,
allowing us to write it as follows:

ri =T(A;) where A =—FJ;0—u; — fe;

*
— Ajg-

19)

where 7T is a closed-form operator, which is continuous yet may
nonsmooth depending on the constraint type. Accordingly, by
the linear relation (14), the slack variable z is also expressed in
closed-form with respect to v.

Based on the closed-form operation (19), solving (12) can be
now expressed as solving following nonlinear equation:

r(d) =Ab—b—> JI

=Ab—b— > JIT(=BJid —u; — Be;)  (20)

7
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then computing z = Jo + %(u + ) accordingly. Due to the
projection operator (18), r: R™ — R™ is a continuous, yet
semismooth equation. Therefore, one can handle the surro-
gate problem by solving this nonlinear (20) using the Newton
method, whose theories developed under semismooth case [48]
by employing the generalized derivatives.

The semismooth Newton iteration is known to exhibit super-
linear convergence near the solution, and with the AL structure,
it has also been employed in convex optimization [29], [49].
However, since our formulation is derived for multicontact
NCP, directly applying standard Newton schemes to (20), which
is nonmonotone, may lack robustness. Although the Prop. 1
ensures the existence of solution and we attempt with vari-
ous globalization techniques based on backtracking/edge-aware
line-search and trust-region methods, we found that none pro-
vided sufficient robustness. This is critical considering that in
physics simulation, as numerous iterations are required at each
time step, and even a single failure can lead to significant conse-
quences. Furthermore, the derivative of the closed-form operator
(19) might become nonsymmetric in contact cases, and cannot
guarantee that % will always be nonsingular. This issue makes
the computation both expensive and unreliable. Consequently,
we have developed two variations of the AL tailored for the
multicontact NCP form (9): the CANAL and the SubADMM,
which are presented in the following sections.

V. CASCADED NEWTON-BASED AL
A. Cascaded Structure

A crucial issue of the Newton-based solution of (20) is that the
landscape of the merit function § ||r(9)||? is nonconvex. Our core
strategy to address this issue employs a cascaded method that
relaxes each surrogate problem into a convex form, facilitating
fast and stable solutions, while updating terms at each AL step
to compensate for discrepancies between the convex problem
and the original NCP. For the convex relation, we utilize the
equivalence of (z, 1) € S, and (5) with the following condition:

0
il Zi e

—_———
Pi

ec” 2n

where C* denotes the dual cone of C. This equivalence is also de-
scribed in [36].If || z; +|| = 0, p; becomes zero, and the condition
corresponds to the complementarity condition for open and stick
contact. If ||z; .|| > 0, (21) essentially includes the following:

pihiml| il + A 1zie = 0

which implies that yud; , = || e[|, and A7,z ¢ + [|Xi o]l ]| 26,0 ]] =
01is naturally satisfied. This corresponds to the conditions for slip
contact. The reformulated relation in (21) essentially constitutes
a cone complementarity condition, if the perturbation term p; is
excluded.

A key idea of our cascaded Newton approach is to substitute
the perturbation term p,; by borrowing z; from the previous AL
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iteration. In other words, we treat p; as a constant in every surro-
gate problem, and temporarily consider the relationship between
z; and A; as a cone complementarity condition. Consequently,
in the (I 4+ 1)th AL iteration, we solve the following nonlinear
equation that replaces the strict operator (17) with the proximal
operator:

r(ﬁl+1) _ A{)l+1 —b— ZJZT)\’i—Fl

AL = T (— B0 — b — el (22)

n

i

where &} = e; + pl = e; + [0 0 |z}, ]]”. Even after this re-
placement, the nonlinear equation in (22) remains semismooth.
However, we can demonstrate that it is integrable, as detailed in
the following proposition. Note that to streamline the explana-
tion, we will focus exclusively on the contact constraints below,
as the other types (i.e., hard and soft) follow straightforwardly.

Proposition 3: The function r(¢) from (22) is the derivative
of the following strongly-convex function:

1 ) 1
h(d) = §UTAU o+ ﬁnw? (23)

Proof: The derivative of h(?) can be expressed as follows:

dh(®) rdi T
pr —Av—b—zi:Ji 0 Ai

=Ab—b—> J .

7

The latter equality holds due to the identity A7 (A; — A7) = 0 in
the proximal operator. The symmetric positive-definite property
of A ensures that the quadratic term is strongly convex. Further-
more, since the squared distance to a convex set is convex, ||A;]|?
is convex with respect to A%, and thus also for ©. Therefore, h(?)
is a strongly-convex function.

This result is closely related to those presented in [14], [24],
although the objective function is defined differently based on
our AL-based formulation. Given this property, we can apply
the exact Newton method to the strongly-convex function (23)
by computing the derivative of r(?) (i.e., the Hessian), which is
proven to exhibit global convergence [43].

B. Newton Step

Computing the derivative of r(0) in (22) with respect to © is
straightforward, except for the part involving 7T'. As the operator
T is a proximal operator on a friction cone (see Fig. 3), itinvolves
a continuous concatenation of three formulaic forms, yet the
function is semismooth at the connection points. Below, we
provide derivative of each form, which can be obtained from
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few algebraic calculations as follows:

033, open
" I3, stick
— = ik, o 7
dr; L e+ PG k)
i e , slip
it 1
(24)

where 1; , is the normalized vector of 5‘2*',t and P(h;¢) =1 —

Xivtigt is the tangential projection matrix. Then, the derivative
can be written as follows:

) N
dr(®) _ 4o Zﬁjf%@,

25
do (25)
Due to the structure given in (24), and consequently the matrix
(25), is guaranteed to be symmetric positive definite, therefore
always invertible. Followingly, the direction of the Newton step
is computed as follows:

i) =~ (42) "o

where the d(?) denotes the direction of ¥ update.

Computation of the step (26) requires the linear solving of
(25), therefore, assemble and factorization of the matrix is
necessary. For better efficiency, we can exploit sparsity pattern of
the inertia matrix and the constraint Jacobian during the process.

(26)

C. Exact Line-Search

Drawing from well-known convex optimization theory [43],
we can guarantee that (26) provides a descent direction. How-
ever, we still need to integrate a suitable line-search scheme
to ensure global convergence. Here, the line-search problem
can be described as following 1-D, strictly convex optimization
problem as follows:

min f(0 + ad()). 27)
a>0

Similar to [24], we can find a globally optimal solution of the
problem (27) using the rtsafe algorithm, which effectively
combines the 1-D Newton—Raphson method and a bisection
scheme. In practice, we find that the Newton step, when com-
bined with the aforementioned exact line-search, performs ro-
bustly even with large values of . This approach significantly
enhances the robustness of the simulator, as the standard semis-
mooth Newton method on (20) often leads to failures, especially
for large (3. The effectiveness is attributable to the integration of
our cascaded scheme and the well-established theories in convex
optimization literature.

D. Warm-Start and Penalty Parameter Update

At each Newton loop, we can warm-start v from the value of
the previous CANAL loop. This effectively reduces the number
of necessary Newton steps in practice, as the optimal solution
of the inner convex optimization should be similar as the AL
iteration converges. Typically, with warm starting, we find that
one or two Newton iterations often suffice after some progress
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has been made in the CANAL iteration. Therefore, the compu-
tational cost per iteration step tends to decrease. For the first
iteration, we can warm-start v and u (and therefore also z) by
using the values from the previous time step.

The penalty parameter 3 plays a crucial role in the CANAL
algorithm. Typically, a high value of 8 improves the convergence
of theresidual ||.J© — z|| to zero. However, it also makes the con-
vex problem numerically stiff, thus requiring additional Newton
iterations to solve. Consequently, we begin with a moderate
value of 3 (10* in our cases) and increase it if the residual value
is not sufficiently reduced. The update rule for increasing [ is
defined as follows:

B < min(kf, 5)

where x > 1 is the hyperparameter. This rule includes restric-
tion of 8 from becoming unnecessarily large, thus bounding
the stiffness of (28) to circumvent numerical instability. Note
that, if we perform only a single iteration on CANAL, it is
equivalent to solving a soft convex formulation of contact as
in [2], [25]. In this regard, CANAL can be considered as their
extension, refining approximations and converging to near-rigid
behavior through the update of primal-dual variables. Therefore,
CANAL can effectively eliminate physical artifacts commonly
associated with convex formulations, such as the “gliding effect”
during sliding [24] and penetration behaviors that depend on
the compliance parameter. For the corresponding experimental
analysis, refer to Section VII-E. In practice, we observe that
CANAL typically converges to a highly accurate solution of
the multicontact NCP within a few iterations. Overall CANAL
algorithm is summarized in Algorithm 1.

(28)

VI. SUBSYSTEM-BASED ADMM

While the CANAL-based multicontact simulation described
in Section V exhibits fast convergence and stable constraint
handling in practice, its scalability may be limited by the need
to compute at least one Newton step for each AL iteration.
Although we fully exploit the sparsity pattern, the Hessian
matrix may become fully dense in the worst-case scenarios (e.g.,
long kinematic chains, dense coupling), thereby significantly
increasing the complexity of the factorization process. Conse-
quently, this approach can become computationally expensive
when dealing with large-DOF multibody systems that include
numerous objects.

One reasonable option in this regard is to adopt the methodol-
ogy of ADMM, which, instead of solving the coupled problem
of (0, z), performs alternating computation for each ¢ and z.
By employing this alternating approach, the problem can be
decomposed into a closed-form operator for z from (19) and a
linear problem for ¥ from (12):

(A4+BJEN0=b+ JT(Bz —u) (29)

Although this vanilla ADMM allows matrix factorization to
be performed only once for each time step, its computational
efficiency diminishes with increasing system size, and also the
sparsity pattern of the matrix in (29) is same with the Hessian
matrices used in CANAL. In addition, in practice, ADMM
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Algorithm 1: Multicontact Simulation via CANAL.
1 while simulation do

2 initialize [ = 0,7°,2%, 8> 0,k > 1,0<n < 1
3 while CANAL loop do

4 initialize 'T! « !

5 compute é based on 2!

6 while Newton loop do

7 compute 7(9!T1) (22)

8 if |7(9'+1)]| < 0 then

9 | break

10 end

1 compute Newton step d(9'*!) (26)
12 compute « via exact line-search (27)
13 D oL 4 ad(ot )

14 end

15 update z/*! and multiplier u!*! (13)

16 if |Jolt — 21| < 04L then

17 | break

18 else

19 if || Jolt! — 2| > (|| Jo — 2| then
20 | update 3 (28)

21 end

22 end

23 l+—1+1

24 end

25 update system state using 0!t
26 end

often necessitates tuning of the parameter 5 during iterations
to achieve optimal performance, which may require refactor-
ization of the matrix. Hence, we introduce a novel algorithm
termed SubADMM, designed to offer enhanced scalability with
parallelization capabilities.

A. Subsystem-Based Reformulation

In our robotic simulation, we assume that the multibody
system is composed of a kinematic chain [50], where each body
is connected to its parent body via various types of joints (fixed,
floating, revolute, prismatic, etc.). We then define the notion of a
subsystem as a single subtree rooted at the ground. For example,
a single floating rigid body or a single robot (each of robotic
arm, humanoid, etc.) is regarded as a subsystem.

To better leverage the subsystem structure, we adopt a vari-
ation on the definition of AL compared to the one described in
Section IV. We first rewrite the multicontact simulation problem
(8) as follows:

Aoy =b;+ > JEx Vie{l,...,N}

st. (Vi h) €Sei Vie{l,...,M} (30)

where M is the number of constraint, /N is the number of
subsystem, and V; is the subset of {01, ...,0n} that contributes
to the ith constraint. Here, J;; are defined only for (i, j) such
that ©; € V;. Note that our reformulation does not rely on
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Fig. 4. Illustrative example demonstrating division and slack variable defini-
tion in SUbADMM. Left: A multibody system with contacts comprising four
subsystems, including one articulated body (robot) and three rigid bodies. A
total of nine bodies (light gray) and five resulting constraints (dark gray) are
shown. Right: Corresponding graphical representation.

any assumptions about the system. In the unconstrained case,
the dynamics of each subsystem are readily decoupled (thus
A0 = b V7). The coupling between subsystems is modeled by
constraint forces as described in (30), which include both intra
and intersubsystem interactions.

In robotic systems, constraints are applied either intra- or
interbodies (e.g., contacts, tendons) or to joints (e.g., limits,
controls). Based on this insight, we also reformulate the structure
of the Jacobian. To illustrate the idea, let us consider the example
in Fig. 4. In this example, the Jacobian for the first constraint
(contact between the 5th and 7th bodies) can be written as
follows:

Ji = [Jl,bg,z]bs,l Jl,b7<]b7,2}

where Jj,, . maps the joint space to the body space, and J, 3,
maps the body space to the constraint space. In this case, Jaco-
bian for each subsystem is naturally defined as follows:

Jin = JipsJog1 Jiz = J1p. b 2 (€29)

Meanwhile, in the case of an intersubsystem constraint, such
as the fifth constraint in Fig. 4, acting internally on the first
subsystem, we express the Jacobian as follows:

| 5006y 1 32)
JI5.65 Jbs 1

which splits the original Jacobian Js 3, Jy, 1 + J5.0,Jp,,1 and
stack it row-wise.! This reformulation is similarly applied for the
constraints to joints. Below, we describe how this reformulation
can lead to an efficient ADMM process.

B. ADMM for the Reformulation

Based on the reformulation described in Section VI-A, we
define slack variable to equivalently express the problem similar
to (9):

Aoy =b;+ > JEx Vie{l,... N}
i

S.t. (Zia)\i) S Sc,i, Zij = Jij@j Vi € {1, .. .,M} (33)

where Z; is the set of slack variables z;; such that (3, j) satisfies
©; € V;. Fig. 4 gives an example of how z;; are defined under

!For consistency, A; in (30) should technically be stacked row-wise for this
case, but we maintain the current notation for simplicity.
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the subsystem-based structure. Then, from the AL structure
described in Section IV, surrogate problem for the reformulation
(33) can be formulated as follows:

(Aj + ZﬂJgJij)ﬁj - BZ‘]%ZM =bi — nguij v

—ﬁz]ijf)j + Bzij = Ujj5 + )\i V’L,j

S.L. (Zi,)\.i) S Scﬂ' Vi.
(34)

The problem described in (34) still involves coupling between
all 9; and z;;. Therefore, solving it all at once would negate the
benefits of using a subsystem-based representation.

However, by leveraging the ADMM structure (7), an alternate
resolution for each variable is performed, allowing us to capi-
talize on the subsystem-based partitioning described above. By
solving (34) with respect to v first, it reduces to following linear
problem for all j:

(A5 + D2 8575 )l = by 4 37 I (B2l —uly) 39)

where [ denotes the iteration index. The process described in (35)
essentially involves obtaining a linear solution of size dim(?;)
for each subsystem, and always solvable from the positive
definite property of the left-most matrix. A crucial difference
between (29) is that the linear problem is much smaller, while
each of them can be solved in parallel. Each A; + ). 6]1.7; Jij
can be prefactorized before iteration, as they remain invariant
unless 3 is modified.

Then, solving (34) with respect to z;; can be reduced to
following problem for all 7:

Bl = BI0 ul A st (Ziohi) € Se (36)
—/_/

I+1
Yij

The solution of (36) can be performed independently for each
1, allowing for parallelization across all constraints. In addition,
as described in Section IV-C, the relation between z and A is
matrix-free, thus allowing for a closed-form solution process.
However, the formulation needs to be slightly adjusted since
multiple slack variables in Z; are involved in each constraint.
For the case of hard constraint, (15) can be adjusted for the
subsystem-based reformulation as follows:

I+1
LY.+ pe;
)»é“ == <_W> (37)

| Z;]

where |Z;| denotes the cardinality of Z,;. Meanwhile, for the soft
constraints, (16) can be adjusted as follows:

S — bi 3,y + Bie:
B

38
bi|Zi| + B (38)
Finally, for the contact constraints, we can use
I+1
)\,l-+1 — Hzlrict _ Zﬂ yl] + /867: (39)

|Zi
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e

Fig. 5. Iteration structure of SubADMM. ¥ is updated independently for each
subsystem block, while z is independently updated for each constraint factor.

instead of (17). The resulting equations (37), (38), and (39) still
consist of simple algebraic operations, making them easy to
compute. Note that we directly employ the strict operator in
(39), without adopting the cascaded approach with the proximal
operator as used in CANAL. This is because ADMM strategi-
cally employs a single alternating solution without fully solving
the surrogate problem, which provides conservative updates and
maintains stability without requiring a specific convexification
and globalization process.

After both alternating steps, the Lagrange multiplier is up-
dated as follows:

upft =g + Byt — 2

= (40)
Hence, there is no necessity to store u;; separately; only A; needs
to be retained. In summary, our SubADMM iterates between
(35), (36), and (40), with each step being naturally parallelizable
per subsystem or per constraint as illustrated in Fig. 5. This
property ensures the scalability of the algorithm with respect to
the number of subsystems and constraints.

C. Factorization of Subsystem Matrices

In the SuUbADMM process described above, the size of each
linear problem in (35) is determined by dim(%;), which equals
6 for a subsystem consisting of a single rigid body. However for
subsystems with articulated body structures, it corresponds to
the total DOF of joints. Generally, the factorization of a matrix
has a complexity of O(n?). Consequently, there may be concerns
that our algorithm could become susceptible to an increase in
the degrees of freedom of the subsystem, such as in a tree with
extensive length, unless A; + . BJZ?; Jij possesses a special
structure.

However, the reformulation technique (32) we established
earlier for the Jacobian matrix, becomes crucial in addressing
this concern. To illustrate, let us derive the equation as follows:

A+ BIST = A+ Y Y B T T T,
[ [ k

Hbj.l
T s Js. 5 (41)
Bj,j . Bj,j

Hbj,\sj\
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where B; represents the set containing every body index in jth
subsystem, J, ; denotes the Jacobian mapping from subsys-
tem joints to all child body spaces, and Hj, € R%*6 can be
interpreted as the virtual effective matrix defined for each body,
expressed as follows:

Hy, = My, + Y BJL, Jis, (42)
3

where M, is the inertia matrix for the body originated from A;.
One significant advantage of the structure (41) is that H; forms
a block-diagonal matrix, ensuring that the entire matrix always
maintains the same sparsity structure as the inertia matrix of
the articulated body. Hence, we can implement an efficient con-
struction and factorization algorithm based on the kinematic-tree
structure, which is well-known as Featherstone’s algorithm [50].
Specifically, we use composite rigid body algorithm [50] that
capitalizes on branch-induced sparsity to streamline compu-
tations, recursively navigating to the parent node to perform
efficient fill-ins. In Appendix A, we detail how the algorithm on
(42) can be efficiently performed. It is worth noting that, without
the Jacobian reformulation described in (32), H, B, does not
exhibit block diagonal characteristics. As a result, the sparsity
pattern becomes more complex and cannot be determined solely
by the kinematic structure, but rather changes with each time
step.

Remark 1: Based on the aforementioned matrix structure,
rather than constructing and factorizing (41), we can solve the
linear equation (35) using the articulated body algorithm [50]
at each SubADMM iteration step. While this approach strictly
guarantees O(n) complexity for the body count, with no addi-
tional overhead for changes in (3, we have observed that using
factorization is often more efficient in practice, given that Sub-
ADMM typically requires a few tens of iteration. Nonetheless,
this alternative remains as a viable option.

D. Convergence and Adaptive Penalty Parameter

For strictly convex optimization, ADMM is known to guaran-
tee convergence at a linear rate [44]. Although our formulation
shares similarities with the convex optimization, the multicon-
tact condition is generally not integrable, making theoretical
convergence not well established in general. However, we em-
pirically find that the convergence properties in our SubADMM-
based simulations are comparable to those observed in convex
optimization.

Typically, residuals in ADMM are defined in two kinds:
primal and dual. In SubADMM, these definitions similarly hold
as follows:

Op = max [[Jij0; — 24|
9d = mjaX ||AJ0J - bj - Z J;J;)LZH (43)
i

where 0, and ¢, represent the primal and dual residuals, re-
spectively. Here, the primal residual can be interpreted as the
satisfaction of constraints, while the dual residual reflects the
satisfaction of the dynamics equations. Although we observe
stable convergence of the residuals (43) in SubADMM, the

Authorized licensed use limited to: Seoul National University. Downloaded on October 28,2025 at 06:35:43 UTC from |IEEE Xplore. Restrictions apply.



3862

Algorithm 2: Simulation Using SubADMM.

1 subsystem-based reformulation (Sec. VI-A)
2 while simulation do

3 initialize

4 V4 construct Aj,b; in parallel

5 Vi construct e;, J; in parallel

6 | Vj factorize A; + Y, 8.J]5.J;; in parallel
(Sec. VI-C)

7 initialize [ = 0, 20, u°

8 while SubADMM loop do

9 Vj update @é“ in parallel (35)

10 Vj update Zf“ in parallel (36)

11 Vi store ul 't (40)

12 compute residual 6, 04 (43)

13 if 0, + 64 < 64, or | = 1,4, then

14 | break

15 else

16 update S (44) (optional)

17 Vj refactorize A; + ). 3 Jg; Jij in parallel

18 end

19 l+—1+1

20 end

21 | update each subsystem state using 9/

22 end

method still inherits well-known drawbacks associated with
ADMM-style iterations. Specifically, the performance of the
algorithm is heavily dependent on the strategy used to select the
penalty parameter /3. A popular strategy is to adaptively tune 3
based on the residual. Generally, a large /3 reduces the primal
residual, while a small 3 reduces the dual residual. Therefore,
we can adopt the strategy of adjusting 3 based on the following
rule:

8= 6\/2 it 6, > ~0q0rf; > 0, (44)
where v > 1 is a hyperparameter. This adjustment should ac-
company the refactorization of A; + 3, 5Ji7; Ji;j. However,
thanks to our subsystem-based division structure, this refactor-
ization can also be performed in a parallelized and scalable man-
ner, allowing us to reduce overhead and enable more frequent
feedback adjustments.

Moreover, another crucial aspect we observe to address this
issue is that the presence of large number of inactive con-
straints (the open case for contact) can impede convergence.
Therefore, conducting thorough broad-phase collision tests to
cull reasonable contact pairs is a significant step in enhancing
convergence speed. For the initialization of 3, we consider the
structure of the terms in (41). A practical strategy involves
balancing the weighting between the dynamics-related term
A; and the constraint-related term » , J% Jij, as suggested in
general theoretical analysis [51], [52]. From this perspective,
[ in (42) can be interpreted as reflecting a pseudodensity (i.e.,
body mass divided by the number of contact points on it), given
that the Jacobian J; 3, maps the motion of the body frame to
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the motion of a specific point on the body (see also derivation in
Appendix A). Based on this insight, we use the geometric mean
of the pseudodensities of all bodies as the initial value for 3.

The SubADMM algorithm is summarized in Algorithm 2.
Due to its splitting nature, SUbADMM shares its motivation
with distributed optimization approaches such as consensus
ADMM [53]. However, unlike consensus ADMM, where sub-
problems are solved while achieving consensus, SUbADMM is
designed to solve the dynamics of each subsystem block while
satisfying the various constraints arising in physics simulation.
In addition, the tailored variable splitting exploits the structure
of rigid body systems to enable efficient computation.

VII. EXAMPLES AND EVALUATIONS

In this section, we present several implementation examples
to illustrate the advantages of the proposed solver algorithms.
The key question we address here is whether our AL-based
multicontact solver (CANAL and SubADMM) can address the
limitations of existing per-contact schemes in solving NCP
posed in various robotic scenarios. As a universal baseline, we
have implemented the PGS solver, which is widely utilized in
numerous software applications (see Table I) and can handle
NCP without the need for model relaxation. Note that we do
not consider methods that depend on specific model relaxations,
such as direct pivoting schemes based on LCP formulation.

Quantifying the accuracy of different multicontact solvers
is nontrivial. For each time step, it is essential to assess how
well the solution (9, 1) satisfies two conditions: dynamics and
contact constraints. For consistent comparison, we first project
 using the relationship © = A~1(b+ JT1) based on the A
result of solver, making the dynamics residual become zero.
Subsequently, we compute z using the following:

which is derived from the process described in Section IV-C,
and we measure the contact residual as ||J0 — z|| divided by the
number of contacts. This residual becomes zero only when the
contact conditions are exactly satisfied. Using this strategy, we
can fairly compare the accuracy of different solvers: dual-based
(PGS) and primal-dual based (CANAL and SubADMM). For
all examples, we utilize a time step of 1/240s.

For the code implementation, we utilize the C++ language,
employing the Eigen matrix library [54] for linear algebra oper-
ations and the OpenGL library for rendering. Computation time
is measured on an Intel Core 15-13600KF CPU at 3.50 GHz.

A. Bolt-Nut Assembly

The first example we consider is the simulation of a bolt-nut
assembly. This scenario is characterized by the intensive forma-
tion of contacts and stiff interactions due to the complexity of
the geometry. As a result, the DOF for the constraints (typically
hundreds) far exceed those of the system itself. In this context,
two significant issues arise with the per-contact solver: 1) The
Delassus operator becomes large and dense (i.e., many contacts
are coupled), which slows down the iteration scheme, and 2)
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Fig.6. Left: Visualization of an M48 bolt and nut used in our bolt-nut assembly
simulation test. Right: Contact points visualized as blue spheres in the test
configuration.
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Fig. 7. Comparison of CANAL, SubADMM, and PGS for the bolt-nut as-

sembly task simulation. Left: Residual decrease over computation time. Right:
Computation time over iteration.

the intensive contact results in a limited feasible region or even
leads to infeasibility, thereby slowing convergence.

The scenario is configured via a pair of M48 bolt and nut,
visualized in Fig. 6. Here, collision detection process between
the bolt and nut might be challenging. Therefore, we adopt a
neural network-based signed distance function model presented
in [55]. Based on this model, we can precisely represent the
surface of the bolt, while the nut is represented through multiple
triangulated face to perform collision detection using Frank—
Wolfe algorithm [56]. In addition, if the number of detected
contact points exceeds 120, which is empirically found to be
impractical, we perform contact clustering [55], [57] to effec-
tively reduce them.

1) Single Step Test: To precisely evaluate the quantitative
performance, we first measure the results of running different
solvers single step at the same state and inputs. For test case
generation, we sample 10 configurations of a nut that form
numerous contacts with the bolt (see Fig. 6 for an example). We
then apply 10 random external wrenches to the nut, generating
a total of 100 test cases. The performance of the solvers in such
scenarios is depicted in Fig. 7. As demonstrated, CANAL and
SubADMM solve the problems with higher accuracy compared
to the PGS algorithm. Both algorithms can achieve residuals of
1073 or less, whereas PGS struggles to converge quickly past
10~*. In particular, CANAL exhibits superlinear convergence,
achieving complete convergence in about 10 iterations. While
SubADMM quickly converges to a certain accuracy, due to
its first-order nature, it shows lower accuracy than CANAL
after a certain period. For the computation time per iteration,
SubADMM requires significantly less compared to the other
two algorithms as it requires negligible preparation phase cost
and each iteration can be performed very quickly. CANAL takes
more time per iteration compared to PGS, however, its rapid

Fig. 8.
simulation test. Right: Contact points visualized as blue spheres in the test

Left: Visualization of a bowl, plate, and pot used in our dish piling

configuration.
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Fig. 9. Comparison of CANAL, SubADMM, and PGS for the dish piling
simulation. Left: Residual decrease over computation time. Right: Computation
time over iteration.

convergence leads to fewer iterations overall, resulting in shorter
total computation time. While SubADMM and PGS incur uni-
form costs for each iteration, leading to a linear increase in com-
putation time, computation time for CANAL grows sublinearly
as iterations progress. This is due to the effect of warm-starting
explained in Section V-D, as the outer AL iteration approaches
convergence, the number of required Newton iterations to solve
the inner convex problem decreases. Overall, the results suggest
that if we aim to achieve reasonable accuracy in a very short
amount of time, SUbADMM is a good option. Conversely, if
very high accuracy is desired and more computational budget is
available, CANAL is the preferable option.

2) Assembly Using Robot Manipulator: We also perform a
full assembly task simulation using a robotic manipulator. The
manipulator comprises a Franka Panda arm equipped with a Hebi
XS5 gripper, with the nut attached to the gripper. We control the
robot using joint-level impedance control to follow the desired
assembly trajectory, and the snapshots are depicted in Fig. 1.
For performance validation, we limit the computation budget
for the solver to 0.5 ms for each time step. As a result, simula-
tions using CANAL and SubADMM successfully complete the
assembly task. In contrast, PGS fails, as significant penetrations
are generated due to its lack of convergence.

B. Dish Piling

The next scenario we implement involves piling dishes, a
common situation in household environments. To compose the
environment, we generate various types of dishes, including
bowls, plates, and pots, as depicted in Fig. 8. As the shapes of
the dishes are concave, this scenario is characterized by a large
number of contacts distributed across the surfaces, leading to
issues similar to those described in Section VII-A. Moreover, we
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model light bowls and plates (0.1 kg) beneath a heavy pot (5 kg),
resulting in a challenging mass ratio for the stable simulation.

We develop a specially designed class of signed distance
functions to represent the geometry of dishes, which is detailed
in Appendix B. This approach enables us to compute the signed
distance using simple algebraic operations, such as rounding
and revolution. Subsequently, we generate the corresponding
triangulated faces to perform collision detection between dishes,
employing the same Frank—Wolfe algorithm used in the bolt-nut
assembly scenario.

1) Single Step Test: For a single-step test, we first obtain the
stacked pose of four dishes (bowl-bowl-plate-pot), as depicted
in Fig. 8. We then apply random external wrenches to each dish,
generating a total of 100 test cases. The performance of the
solvers in these cases is depicted in Fig. 9. As shown, CANAL
and SubADMM achieve significantly better accuracy in less
time compared to PGS. CANAL achieves the highest accuracy,
with residuals under 10~8, and exhibits over linear convergence.
SubADMM, demonstrating first-order convergence, struggles to
achieve residuals under 10~°. Due to the odd mass ratio present
in the environment, the differences in achievable residuals be-
tween the solvers are larger compared to those in the bolt-nut
assembly test. This suggests that CANAL may be the more
preferable option in this case, although SubADMM remains
a viable choice for achieving moderate results in a very short
time. The trend in computation time per iteration is similar to
that observed in bolt-nut assembly scenarios; per-iteration cost
ranks as follows: CANAL > PGS > SubADMM, and the cost
for each iteration in CANAL tends to decrease as the iterations
proceed.

2) Piling Using Robot Manipulator: We also perform a pil-
ing task simulation using a robotic manipulator composed of a
Franka Panda arm equipped with an Allegro hand, bringing the
total system dimension to 47. We employ a joint-level impedance
controller to enable the robot to follow the desired grasp-and-
place trajectory, as depicted in the snapshots in Fig. 1. Similar to
the bolt-nut assembly simulation test, we limit the computation
budget to 1 ms to compare the performance of different solvers.
In this test, SubADMM and CANAL can successfully simulate
the piling, while PGS fails, generating jittery movements due to
a lack of convergence.

C. Pouring

We then simulate the pouring of particles contained in a bottle,
employing a 28-DOF dual-arm manipulator with the upper body
of a Unitree G1 with gripper. Also the particles are modeled
as spheres with a radius of 5 mm and a density of 10 g/cm?,
contained within a bottle whose geometry is defined in the same
way to the dishes in the previous section. We program the robot
to reach for, grasp the bottle, and then pour the particles into
another bottle, as depicted in the simulation snapshots in Fig. 10.

This scenario is characterized by a large number of bodies;
therefore, both the system DOF and the constraint DOF are large,
yet their relationship is relatively sparse compared to previous
examples. Moreover, the results are expected to maintain a stable
grasp and precisely emulate the coupling between a high-gain
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Fig. 10.  Snapshots of a particle pouring task simulation. SUbADMM excels
in computation speed and scalability; CANAL in accuracy.
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Fig. 11.  Comparison of CANAL, SubADMM, and PGS for the pouring
simulation. Left: Average computation time over system DOF. Right: Average
residual over system DOF.

controlled robot and lightweight particles. Our primary objective
for this scenario is to evaluate the scalability of the solvers.
Therefore, we utilize a fixed number of iterations for each
solver—5 for CANAL and 100 for SubADMM and PGS, then
observe the average residual and computation time over the task
execution while varying the number of particles in the bottle (9,
18, 27, 36, 45).

The results are depicted in Fig. 11. As shown in the plots, the
increase in computation time with respect to the particle number
(therefore, system DOF) is ordered as SubADMM < PGS
< CANAL. This result aligns with the theoretical properties,
as the alternating steps of SUbADMM scale at least linearly
with the number of subsystems and constraints. Note that this
scalability could potentially be reduced with the adoption of
more advanced parallelization hardware architectures, although
we remain this as a work for future implementation. In the
case of PGS, while the computation time for each Gauss—Seidel
iteration step increases near linearly, the computation required
to establish a contact relation in the dual space (related to the
Delassus operator) increases superlinearly, making the overall
exponent over SUbADMM. CANAL scales superlinearly mainly
due to the factorization of the Hessian matrix (25). However,
the exponent is still significantly lower than 3, which is typical
for dense matrix factorization, because we leverage the sparse
structure of the contact Jacobian.

In terms of accuracy, CANAL outperforms both SubADMM
and PGS, aligning with theoretical expectations and previous
results. Within 5 iterations, the solver achieves a residual under
1073, In addition, SubADMM consistently demonstrates better
accuracy than PGS, achieving approximately 0.1 times the resid-
ual of PGS. We find that using PGS, attempting a strong grasp
on the bottle can lead to significant instability in the simulation.
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TABLE I
COMPARISON RESULTS OF LEVERAGING A CASCADED NEWTON STRUCTURE
VERSUS DIRECTLY APPLYING STANDARD SEMISMOOTH NEWTON SOLVERS IN
AN AL-BASED MULTICONTACT SOLVER

CANAL | TRDogleg | DampedSN
Inner iter. 30.55 118.8 246.9
Failure[ %] 0 1.2 1.1
Residual[-log] 8.2231 8.5693 8.5644

For all solvers, the residual is not significantly affected by the
number of particles.

D. Ablation Studies

Lastly, we conduct ablation studies to validate the effective-
ness of the technical components presented in this article.

1) Canal: First, we compare a cascaded Newton structure
in CANAL with performing AL by directly solving (20) using
standard semismooth Newton methods. For baselines, we imple-
ment two algorithms: trust-region dogleg algorithm [43], which
is a widely standard method for nonlinear equation solver, and
damped semismooth Newton algorithms based on backtracking
line search on merit function [58]. For both methods, Jacobian of
r(0) is derived similarly with (24) and (25). However, since the
operator 7' is a strict operator here, the Jacobian is not guaranteed
to be symmetric positive definite. Therefore, solving the linear
problem may require additional computational effort in practice,
compared to the Newton step computation in CANAL (26).

For the test, we utilize the same environment and cases
described in the single-step test for the dish piling. The results
are shown in Table II. Here, we perform 10 AL loops for each test
case, and measure the number of inner iterations (i.e., Newton
steps) throughout the entire AL loop, the failure rate (if the
inner loop fails to find the surrogate problem solution within the
desired tolerance), and the residuals of the resulting solutions.

As indicated in the table, the number of inner iterations is
significantly lower for CANAL. This reduction is due to its
cascaded structure, which can transform solving the surrogate
problem into solving a convex optimization problem. Conse-
quently, this structure allows for a convergence guarantee to
the global minimum with exact line search. However, both
TRDogleg and DampedSN often gets stuck in a zone where
it cannot effectively reduce the merit function, leading to re-
quirement of more inner iteration steps and occasional failure.
TRDogleg relatively performs better than DampedSN, with half
the required inner iterations. Comparing the residuals after 10
iterations, CANAL exhibits similarly low residuals compared to
the two baselines. This indicates that updating €; in every AL
iteration within the cascaded structure does not substantially
degrade the convergence properties of the entire algorithm.

2) SubADMM: Next, we compare our SubADMM with
ADMM implementations based on more standard splitting
strategies. For baselines, we implement the following methods:
1) ADMM without subsystem-based splitting (No Sub), as
described earlier in Section VI, which requires solving a full
system size linear equation (29), and 2) ADMM that utilizes
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P

Fig. 12.  Snapshots of a multiple Laikago dropping simulation. The system is
divided into eight subsystems, each interpreted as a kinematic tree.

TABLE III
COMPARISON RESULTS OF ADMM WITH SUBSYSTEM-BASED SPLITTING
VERSUS MORE STANDARD SPLITTING STRATEGIES

SubADMM | No Sub | No Body
Time[ms] 0.435 1.21 0.638
Residual[-log] 4.8802 4.8817 4.8562

subsystem-based splitting but does not employ body-based split-
ting (31) (No Body), which is equivalent to the algorithm in
our prior work [34].

For the test, we set up an environment where multiple
quadrupedal robots Laikago, are dropped onto the floor, as
depicted in Fig. 12. In this scenario, each robot possesses 18
DOF, resulting in a total system DOF of 144. For the collision
geometry, we approximate the trunk, legs, and feet using sim-
ple primitives such as boxes and spheres. Typically, 80 — 100
contacts are generated during the simulation. We use fixed 100
iterations for SubADMM and other baselines.

The comparison results are shown in Table III. As demon-
strated, the ablation studies highlight the advantages of the
proposed techniques. SUbADMM achieves the shortest compu-
tation time due to its ability to utilize efficient matrix assembly,
parallelized matrix factorization, and solving. No Sub takes
the longest computation time, requiring about 2.78 times more
than SubADMM primarily due to its need for whole system size
matrix factorization. Compared to No Body, SubADMM is
about 1.46 times faster, as No Body cannot exploit efficient
submatrix factorization based on the structure given in (41).
Such differences could become more pronounced as the overall
system dimension increases, or through the employment of
advanced code parallelization techniques in SubADMM. For ex-
ample, in 27 Laikago dropping simulation, we find SubADMM
is 3.63 times faster than No Sub. The residuals for all three
solvers are similar, as they share similar theoretical convergence
properties of ADMM.

E. Comparative Analysis With Convex Formulation

As discussed in Section V-D, CANAL is closely related to
the soft convex formulation of contact. To clarify this point, we
construct a simulation example, shown in Fig. 13, consisting of
two stacked dishes subjected to an external force that causes
them to slide along the floor. To analyze the resulting phys-
ical behavior, we measure: 1) the contact residual introduced
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Fig. 13.  Snapshots of a stacked dish sliding simulation. Blue arrows indicate
the external force applied to make the dishes slide on the floor.
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Fig. 14.  Comparison between CANAL and the soft convex formulation in the
stacked dish sliding simulation. Left: vertical position of the lower dish over
time. Right: maximum penetration depth over time. Numbers in parentheses
indicate the iteration count.

earlier, 2) the vertical position of the lower dish, and 3) the
maximum penetration depth over time. As mentioned earlier, the
optimization performed at each iteration of CANAL is, in fact,
structurally equivalent to the convex optimization for the soft
convex formulation. However, CANAL progressively adjusts the
problem during the iterations through dual variable updates and
modulation of the parameter /3, whereas the conventional soft
convex formulation solves the problem only once for a given
set of parameters. This necessitates a careful parameter tuning
strategy. To this end, we adopt the default parameter setting
strategy used in MuJoCo [2].

The results are shown in Fig 14. By relaxing the Signorini
condition of the contact constraint, the conventional soft convex
formulation induces a gliding effect during sliding (i.e., the
object exhibits a positive normal velocity proportional to its
sliding speed), which leads to jittery vertical motion. In contrast,
we observe that this effect is gradually suppressed over iterations
in CANAL. In addition, the amount of penetration between
the dishes decreases, indicating that CANAL effectively elimi-
nates compliance through iterative problem updates within the
AL framework. The average contact residual (— log scale) is
4.02784 for the convex formulation, 4.6621 for CANAL(2),
and 7.9561 for CANAL(S), indicating that additional CANAL
iterations lead to more accurate satisfaction of the contact con-
dition in (5). We conclude the discussion with the following
remark: CANAL can be naturally interpreted as an extension
of the contact convex formulation. Even with a single iteration,
CANAL can produce simulation results effectively identical to
those of existing simulators such as MuJoCo and is therefore
often useful in practice, particularly in scenarios dominated by
sticking contacts. However, when compliance-related behavior
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or approximations arising during sliding become problematic,
additional CANAL iterations can effectively mitigate these ef-
fects.

VIII. CONCLUSION

In this article, we introduce two multicontact solver algo-
rithms, CANAL and SubADMM, based on variations of the AL
method. Our formulation extends the theory of AL to handle
multicontact NCP by iteratively solving surrogate problems and
subsequently updating primal and dual variables. In CANAL,
we variate this AL-based structure into a cascaded form of
convex optimization, which can be solved by exact Newton
steps, thereby ensuring accurate and robust simulation results.
In SubADMM, we employ the concept of ADMM to enable an
alternating solution approach to the surrogate problem. Here,
we propose a novel subsystem-based variable splitting method,
which not only achieves a parallelizable structure but also pre-
serves the sparsity pattern of the submatrix, significantly improv-
ing efficiency. The examples demonstrate their effectiveness in
various robotic simulations characterized by intensive contact
formation and stiff interactions, and also illustrate the tradeoffs
between CANAL, SubADMM, and other existing methods.

A variety of future research areas remain open within the
presented framework. From an algorithmic perspective, the
CANAL algorithm could be tested with other convex optimiza-
tion methods, such as the CG [59] or accelerated projected
gradient [47], for example. Integrating a primal-dual variant of
the Newton method [60] to the optimization utilized in Sec-
tion V-B would also be a valuable research direction to achieve
better performance under illconditioned problems. SubADMM
could be enhanced with various strategies to improve its conver-
gence, including the acceleration of fixed-point iterations [61]
and advanced penalty parameter update schemes. Although our
initial trials observed that the application of these schemes could
degrade the robustness of the simulation, the development of
a solid methodology still remains an open question. From an
implementation perspective, several components of the current
framework can be improved. For instance, tailored factorization
based on the branch-induced sparsity structure could be adopted
for CANAL. In addition, a GPU implementation for SubADMM
could fully exploit its parallelizable nature.

We believe that the algorithms presented in this article can
be further employed in the development of other model-based
solvers for robotic applications. For example, our problem de-
scribed in (8), when formulated without friction, becomes equiv-
alent to a quadratic programming problem, which is commonly
encountered in motion primitives, planning, and model predic-
tive control of robotic systems. Moreover, a forward simulation
solver can be coupled with the differentiation of the results, uti-
lized to address diverse inverse problems involving contact [22].
Our highly accurate solutions are particularly beneficial from
this perspective.

Finally, while the focus of this article is on contact solvers, we
also believe that contact modeling is a crucial aspect of robotic
simulation. This includes the representation of geometry, defi-
nition of contact features, time stepping, friction modeling, and
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O A

Fig. 15. Illustrations for dish signed distance function module generation.

often linked with the contact solver. In this regard, investigating
how our AL-based solver can be effectively integrated with
various aspects, including continuous collision detection [62],
contact fields [63], temporal position updates [17], anisotropic
friction, and lubrication [64], will be a valuable topic to explore.

APPENDIX A
COMPOSITE RIGID BODY ALGORITHM FOR SUBSYSTEM
MATRICES

Contact Jacobian with respect to spatial velocity of the body
can be written as follows:

Jip, = R [ngs *[pz'}]

where R; € SO(3) is the contact frame generated through the
contact normal and p; is the global position of the contact point.
Based on (45), (42) can be written as follows:

Hy, = My, + > BJL, i,

(45)

—[pi]
~[p:J?
where my, is the mass, Ip, is the moment of inertia, and ¢,
is the global center of mass position of the body. It can be
easily verified that H, shares the same fill-in structure as My, ,
with only 10 elements required for matrix storage. Therefore,
as in the original composite rigid body algorithm, addition and
multiplication (of spatial transformation matrix) operations can
be performed with equal efficiency.

I3.3

_ |mwdas = [en,] . +ZB o

M, [Cbk] Iy, —mp, [Cbk i

APPENDIX B
SIGNED DISTANCE FUNCTION OF DISH MODULE

In our experiments, signed distance function of dishes are
defined as follows:

SDFau(p) = SDFau ([\/iE + 13 1s))

which is indeed revolution of following 2-D signed distance
function (see also Fig. 15):

SDF,4(p) = min (dist(p, OA), dist(p, E)) —d (46)

where A, B are points on the plane, and d is a thickness for
padding. By adjusting A, B and d in (46), we can generate
diverse range of dishes. In addition, the derivative of (46) can be
computed analytically, and thus it can be utilized in the collision
detection process.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]
(1]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

3867

REFERENCES

E. Coumans and Y. Bai, “PyBullet, a Python module for physics simu-
lation for games, robotics and machine learning,” 2016-2021. [Online].
Available: https://pybullet.org/

E. Todorov, T. Erez, and Y. Yuval Tassa, “MuJoCo: A physics engine for
modelbased control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2012, pp. 50265033, doi: 10.1109/IROS.2012.6386109.

NVIDIA Corporation, “PhysX SDK,” 2022. [Online]. Available: https:
//github.com/NVIDIAGameWorks/PhysX

C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O.
Bachem, “Brax - a differentiable physics engine for large scale rigid body
simulation,” 2021. [Online]. Available: http://github.com/google/brax

J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 895-902. [Online]. Available: https://raisim.com/

J. D. Westwoodet al., “SOFA an open source framework for medical
simulation,” Netherlands: IOS Press Amsterdam, vol. 125, 2007.

D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and Coulomb friction,” Int.
J. Numer. Methods Eng., vol. 39, no. 15, pp. 2673-2691, 1996.

M. Anitescu and F. A. Potra, “Formulating dynamic multirigid-body con-
tact problems with friction as solvable linear complementarity problems,”
Nonlinear Dyn., vol. 14, pp. 231-247, 1997.

J. E. Lloyd, “Fast implementation of Lemke’s algorithm for rigid body
contact simulation,” in Proc. IEEE Int. Conf. Robot. Automat., 2005,
pp- 4538-4543.

J. Lee et al., “DART: Dynamic animation and robotics toolkit,” J. Open
Source Softw., vol. 3, no. 22, 2018, Art. no. 500.

R. Smith, “Open dynamics engine,” 2008. [Online]. Available: http://www.
ode.org/

M. Macklin, M. Miiller, N. Chentanez, and T. Kim, “Unified particle
physics for real-time applications,” ACM Trans. Graph., vol. 33 no. 4,
2014, Art. no. 153.

M. Macklin, M. Miiller, and N. Chentanez, “XPBD: Position-based sim-
ulation of compliant constrained dynamics,” in Proc. Int. Conf. Motion
Games, 2016, pp. 49-54.

E. Todorov, “Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in MuJoCo,” in Proc. IEEE
Int. Conf. Robot. Automat., 2014, pp. 6054-6061.

P. C. Horak and J. C. Trinkle, “On the similarities and differences among
contact models in robot simulation,” IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 493-499, Apr. 2019.

J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Autom. Lett., vol. 3, no. 2,
pp- 895-902, Apr. 2018.

M. Macklin et al., “Small steps in physics simulation,” in Proc. ACM
SIGGRAPH/Eurographics Symp. Comput. Animation, 2019, pp. 1-7.

M. Miiller, M. Macklin, N. Chentanez, S. Jeschke, and T. Kim, “Detailed
rigid body simulation with extended position based dynamics,” in Comput.
Graph. Forum, vol. 39, pp. 101-112 2020.

V. Makoviychuk et al., “Isaac GYM: High performance GPU-based
physics simulation for robot learning,” 2021, arXiv:2108.10470.

M. Geilinger, D. Hahn, J. Zehnder, M. Bicher, B. Thomaszewski, and
S. Coros, “ADD: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Trans. Graph., vol. 39, no. 6,
pp. 1-15, 2020.

A. M. Castro, A. Qu, N. Kuppuswamy, A. Alspach, and M. Sherman, “A
transition-aware method for the simulation of compliant contact with reg-
ularized friction,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1859-1866,
Apr. 2020.

T. A. Howell, S. L. Cleac’h, J. Z. Kolter, M. Schwager, and Z.
Manchester, “Dojo: A differentiable simulator for robotics,” 2022,
arXiv:2203.00806.

M. Macklin, K. Erleben, M. Miiller, N. Chentanez, S. Jeschke, and V.
Makoviychuk, “Non-smooth newton methods for deformable multi-body
dynamics,” ACM Trans. Graph., vol. 38, no. 5, pp. 1-20, 2019.

A. M. Castro, F. N. Permenter, and X. Han, “An unconstrained convex
formulation of compliant contact,” IEEE Trans. Robot., vol. 39, no. 2,
pp- 1301-1320, Apr. 2023.

R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019.

J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace Hilbertien,” Comptes Rendus Hebdomadaires Des Séances de
I’Académie Des Sci., vol. 255, pp. 2897-2899, 1962.

Authorized licensed use limited to: Seoul National University. Downloaded on October 28,2025 at 06:35:43 UTC from |IEEE Xplore. Restrictions apply.


https://pybullet.org/
https://dx.doi.org/10.1109/IROS.2012.6386109
https://github.com/NVIDIAGameWorks/PhysX
https://github.com/NVIDIAGameWorks/PhysX
http://github.com/google/brax
https://raisim.com/
http://www.ode.org/
http://www.ode.org/

3868

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

N. Parikh et al., “Proximal Algorithms,” Foundations Trends Optim.,vol. 1,
no. 3, pp. 127-239, 2014.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Math. Program.
Computation, vol. 12, pp. 637-672, 2020.

B. Hermans, A. Themelis, and P. Patrinos, “QPALM: A Newton-type
proximal augmented Lagrangian method for quadratic programs,” in Proc.
IEEE Conf. Decis. Control. IEEE, 2019, pp. 4325-4330.

P. Sopasakis, K. Menounou, and P. Patrinos, “Superscs: Fast and accurate
large-scale conic optimization,” in Eur. Control Conf., 2019, pp. 1500-
1505.

B. Bazzana, H. Andreasson, and G. Grisetti, “How-to augmented La-
grangian on factor graphs,” IEEE Robot. Autom. Lett., vol. 9, no. 3,
pp- 2806-2813, Mar. 2024.

T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A fast solver for
constrained trajectory optimization,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 7674-7679.

J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and sparse res-
olution of constrained dynamic equations,” in Robot.: Sci. Syst., 2021,
pp. 1-12.

J.Lee, M. Lee, and D. Lee, “Modular and parallelizable multibody physics
simulation via subsystem-based ADMM,” in Proc. IEEE Int. Conf. Robot.
Automat., 2023, pp. 10132-10138.

M. Kim, Y. Lee, Y. Lee, and D. J. Lee, “Haptic rendering and interactive
simulation using passive midpoint integration,” Int. J. Robot. Res., vol. 36,
no. 12, pp. 1341-1362, 2017.

V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick, “A formulation of
the linear discrete Coulomb friction problem via convex optimization,”
ZAMM- J. Appl. Math. Mechanics/Zeitschrift fiir Angewandte Mathematik
und Mechanik, vol. 91, no. 2, pp. 155-175, 2011.

G. Daviet, “Simple and scalable frictional contacts for thin nodal objects,”
ACM Trans. Graph., vol. 39, no. 4, pp. 61:1-61:16, 2020.

M. Verschoor and A. C. Jalba, “Efficient and accurate collision response
for elastically deformable models,” ACM Trans. Graph., vol. 38, no. 2,
pp. 1-20, 2019.

J. Baumgarte, “Stabilization of constraints and integrals of motion in
dynamical systems,” Comput. Methods Appl. Mechan. Eng., vol. 1, no. 1,
pp. 1-16, 1972.

S. Andrews, M. Teichmann, and P. G. Kry, “Geometric stiffness for real-
time constrained multibody dynamics,” Comput. Graph. Forum, vol. 36,
no. 2, pp. 235-246, 2017.

J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in Proc. IEEE Int. Conf. Robot. Automat.,
2012, pp. 3859-3866.

M. Lee, J. Lee, and D. Lee, “Differentiable dynamics simulation using
invariant contact mapping and damped contact force,” in Proc. IEEE Int.
Conf. Robot. Automat., 2023, pp. 11683—11689.

J. Nocedal and S. J Wright, Numerical Optimization, Berlin, Germany:
Springer, 1999.

S.Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distrib. Optim. and
Stat. Learn. via the Alternating Direction Method of Multipliers, Norwell,
MA, USA, Now Publishers Inc., 2011.

J. Wang, F. Yu, X. Chen, and L. Zhao, “ADMM for efficient deep learning
with global convergence,” in Proc. ACM Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 111-119.

Y. Dai and L. Zhang, “The augmented Lagrangian method can approxi-
mately solve convex optimization with least constraint violation,” Math.
Program., vol. 200, no. 2, pp. 633-667, 2023.

J. Lee, M. Lee, and D. Lee, “Large-dimensional multibody dynamics
simulation using contact nodalization and diagonalization,” IEEE Trans.
Robot., vol. 39, no. 2, pp. 1419-1438, Apr. 2023.

M. Hintermiiller, “Semismooth Newton methods and applications,” Dep.
Math., Humboldt-Univ. Berlin, Berlin, Germany, 2010.

A. Ali, E. Wong, and J. Z. Kolter, “A semismooth newton method for fast,
generic convex programming,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 70-79.

R. Featherstone, Rigid Body Dyn. Algorithms, Berlin, Germany: Springer,
2014.

E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal pa-
rameter selection for the alternating direction method of multipliers
(ADMM): Quadratic problems,” IEEE Trans. Autom. Control, vol. 60,
no. 3, pp. 644-658, Mar. 2015.

P. Giselsson and S. Boyd, “Linear convergence and metric selection for
douglas-rachford splitting and ADMM,” [EEE Trans. Autom. Control,
vol. 62, no. 2, pp. 532-544, Feb. 2017.

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimiza-
tion via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482-497, Jan. 2015.

G. Gaél et al.,, “Eigen V3,” 2010. [Online]. Available: http://eigen.
tuxfamily.org

J. Yoon, M. Lee, D. Son, and D. Lee, “Fast and accurate data-driven sim-
ulation framework for contact-intensive tight-tolerance robotic assembly
tasks,” 2022, arXiv:2202.13098.

M. Macklin, K. Erleben, M. Miiller, N. Chentanez, S. Jeschke, and Z.
Corse, “Local optimization for robust signed distance field collision,” Proc.
ACM Comput. Graph. Interactive Techn., vol. 3, no. 1, pp. 1-17, 2020.
A.K.Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Comput. Surv., vol. 31, no. 3, pp. 264-323, 1999.

T. D. Luca, F. Facchinei, and C. Kanzow, “A semismooth equation ap-
proach to the solution of nonlinear complementarity problems,” Math.
Program., vol. 75, pp. 407-439, 1996.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” Comput. J., vol. 7, no. 2, pp. 149-154, 1964.

P. E. Gill and D. P. Robinson, “A primal-dual augmented Lagrangian,”
Comput. Optim. Appl., vol. 51, no. 1, pp. 1-25, 2012.

A. Themelis and P. Patrinos, “Supermann: A superlinearly convergent
algorithm for finding fixed points of nonexpansive operators,” IEEE Trans.
Autom. Control, vol. 64, no. 12, pp. 4875-4890, Dec. 2019.

M. Li et al., “Incremental potential contact: Intersection-and inversion-
free, large-deformation dynamics,” ACM Trans. Graph., vol. 39, no. 4,
2020, Art. no. 49.

A. Castro, X. Han, and J. Masterjohn, “A theory of irrotational contact
fields,” 2023, arXiv:2312.03908.

K. C. Ludema and L. Ajayi, Friction, Wear, Lubrication: A Textbook in
Tribology, Boca Raton, FL, USA: CRC Press, 2018.

Jeongmin Lee received the B.S. and the Ph.D. de-
grees in mechanical engineering from Seoul National
University, Seoul, Republic of Korea, in 2019 and
2024, respectively.

He is currently a Senior Research Engineer with
Holiday Robotics, Seoul, South Korea. His main re-
search interests include optimization, physics simu-
lation, and multicontact robotic manipulation.

Minji Lee (Graduate Student Member, IEEE) re-
ceived the B.S. degree in mechanical engineering in
2019 from Seoul National University, Seoul, Repub-
lic of Korea, where she is currently working toward
the Ph.D. degree in mechanical engineering.

Her main research interests include motion plan-
ning, contact modeling, and manipulation with mul-
ticontact.

Sunkyung Park received the B.S. degree in me-
chanical engineering, in 2024, from Seoul National
University, Seoul, South Korea, where he is currently
working toward the M.S. degree in mechanical engi-
neering.

His main research interests include optimization,
physics simulation, and robotic manipulation.

e

Authorized licensed use limited to: Seoul National University. Downloaded on October 28,2025 at 06:35:43 UTC from |IEEE Xplore. Restrictions apply.


http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

Jinhee Yun received the B.S. degree in mechanical
engineering in 2024 from Seoul National University,
Seoul, South Korea, where she is currently working
toward the Ph.D. degree in mechanical engineering.

Her main research interests include contact simu-
lation and robotic manipulation.

LEE et al.: VARIATIONS OF AUGMENTED LAGRANGIAN FOR ROBOTIC MULTICONTACT SIMULATION 3869

Dongjun Lee (Member, IEEE) received the B.S. de-
gree in mechanical engineering and the M.S. degree
in automation and design from the Korea Advanced
Institute of Science and Technology, Daejeon, Korea
in 1995 and 1997, respectively, and the Ph.D. degree
in mechanical engineering from the University of
Minnesota at Twin Cities, Minneapolis, MN, USA,
in 2004.
He is currently a Professor with the Department
A\ o of Mechanical Engineering, Seoul National Univer-
sity, Seoul, South Korea. His main research interests
include the dynamics and control of robotic and mechatronic systems with
emphasis on aerial/mobile robots, teleoperation/haptics, physics simulation,
multirobot systems, and industrial control applications.

Dr. Lee was the recipient of the US NSF CAREER Award 2009, the Best Paper
Awards from TAS 2012 and KROC 2020, and the SNU Excellence in Research
Award 2023. He is a Senior Editor of International Journal of Robotics Research
and was on the Editorial Boards for IEEE TRANSACTIONS ON ROBOTICS, IEEE
ROBOTICS AND AUTOMATION LETTERS, and IEEE TRANSACTIONS ON HAPTICS.

Authorized licensed use limited to: Seoul National University. Downloaded on October 28,2025 at 06:35:43 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


