Flying-LASDRA: Autonomous Outdoor Flying

We perform outdoor autonomous flying experiment of f-LASDRA, constructed with multiple ODAR-8 links ( connected via cable with each other. Each ODAR-8 can compensate for its own weight, rendering f-LASDRA scalable. Utilizing SCKF with IMU/GNSS-module on each link and inter-link kinematic-constraints, we attain estimation accuracy suitable for stable control (<5cm: cf. 1-5m w/ GNSS).  (Accepted ICRA2019, also featured in IEEE Spectrum (2019)) 

Please reload

LASDRA (Large-Size Aerial Skeleton w/ Distributed Rotor Actuation)

We present experimental results of a novel robotic system, LASDRA (large-size aerial skeleton w/ distributed rotor actuation), which consists of two 1.5m fully-actuated links, making 3m long 6-DOF manipulation system with weight of only 10kg, an order of magnitude lighter than that of similar-size electrical/hydraulic motor robots.  The LASDRA system is scalable, can be made arbitrarily long, dexterously-articulated, yet, still light/slender .  Shown here areits  end-effector trajectory tracking and valve turning experiments. (ICRA2018)

Please reload

ODAR (Omni-Directional Aerial Robot)

The ODAR (omni-directional aerial robot) is a fully-actuated aerial platform, that can generate arbitrary control wrench in se(3) by six opportunistically distributed rotors, each driven by reversible ESC (electronic speed controller) so that it can realize such powerful behaviors impossible with conventional multi-rotor flying platforms as resisting sideway gust while keeping its attitude and exerting downward pushing force larger than its own weight. (IROS2016, TMECH2018, also featured in IEEE Spectrum (2017, 2018))

Please reload

SmQ (Spherically-Connected multi-Quadrotor) Platform

SmQ platform is a new platform for aerial manipulation, which consists of a tool (or frame) with multiple quadrotors connected to that by spherical joints, acting as distributed rotating thrust generators.  Lyapunov control design is performed while taking into account the spherical joint limits in a form of real-time constrained optimization. (IROS2015, TRO2018, also featured in IEEE Spectrum (2015, 2017))

Please reload

QM (Quadrotor-Manipulator) System

We show that, similar to rigid-body dynamics in SE(3), the QM-system also consists of two decoupled dynamics: 1) center-of-mass dynamics in E(3) with under-actuation and gravity; and 2) the “internal rotational” dynamics, which assumes the form of standard manipulator dynamics with full-actuation and no gravity. Utilizing this,  we design backstepping control, that allows us to achieve coarse(platform)-fine(manipulator) control as well as cooperative manipulation of multiple QM systems. (ICRA2014, ICRA2015)

Please reload

QT (Quadrotor-Tool) System

We propose a novel control framework to enable a quadrotor to operate a tool attached on it.  We fully characterize the internal dynamics of the spatial quadrotor tool operation, which arises due to the quadrotor’s under-actuation, and elucidate a seemingly counter-intuitive necessary condition for the internal stability, that is, the tool-tip should be located above the quadrotor’s center-of-mass. We further manifest that this internal dynamics can exhibit finite-time escape and propose a stabilizing action to prevent that.  (DSCC2012, IROS2013, Automatica2015)

Please reload

© 2016 by INRoL
Proudly created with

1 Gwanak-Ro, Gwanak-Gu

Bldg 301 Room 211

Seoul National University

Seoul, 08826, Korea

(Phone) +82-2-880-1690

(Email)         (Map)